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Abstract—A new maximum likelihood (ML) estimator for the
blind estimation of the reverberation time (RT) is derived. In
contrast to previously proposed ML-based reverberation time
estimators, the RT estimate is obtained by a simple closed-
form expression, which leads to significant computational savings.
Moreover, it is shown that the new estimator is unbiased
and reaches the Cramer-Rao lower bound. The proposed RT
estimator achieves a similar estimation accuracy but involves
a significantly lower computational complexity compared to an
ML-based RT estimator that scored among the best at the ACE
Challenge.

I. INTRODUCTION

An important quantity for the characterization of acoustic
environments is given by the reverberation time (RT) Tgo
[1]. Knowledge about the RT can be exploited, e.g., for
enhanced automatic speech recognition (ASR), e.g., [2]-[5], or
speech dereverberation, e.g., [6]-[8]. For such applications, the
(often time-varying) RT can usually not be determined from
a measured room impulse response (RIR) by means of the
Schroeder method [9] or its variants, but has to be estimated
blindly from a reverberant speech signal, which is frequently
also distorted by noise. The above-mentioned applications and
others have fueled the research interest in blind reverberation
time estimation (RTE) and numerous methods were proposed
in recent years, e.g., [10]-[23]. The variety of concepts for
blind RTE has motivated the Acoustic Characterisation of
Environments (ACE) Challenge, which aimed for an objective
benchmarking of RT and direct-to-reverberant energy ratio
(DRR) estimators [24], [25]. It turned out that the approaches
of [26], [27], which are based on a sound decay detection,
achieved the highest estimation accuracy for single-channel
RT estimation [25]. Many algorithms for RT estimation rely on
the detection of sound energy decays of the reverberant speech
signal from which the decay rate (and thus the RT) is estimated
either by means of a maximum-likelihood (ML) estimator [10],
[11], [15], [16], [27] or linear regression [6], [12], [13], [18],
[21]. Some require prior training for parameter calibration
[13], [18], [21] or perform the sound decay detection in
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the subband-domain, e.g., [17], [26], [27]. A comprehensive
statistical analysis of such blind RT estimators w.r.t. estimation
bias and variance is provided by [28].

A drawback of current ML estimators for RTE [10], [11],
[15], [16], [27] is that the maximum of the likelihood function
can not be determined by a closed-form expression, but has
to be found by iterative schemes or a brute force search,
which typically causes a high computational load. In this
contribution, a novel ML estimator is derived which is given
by a simple closed-form expression and is shown to reach the
Cramer-Rao lower bound (CRLB).

The paper is organized as follows: In Sec. II, the new ML
estimator is derived and its statistical properties are analyzed
in Sec. III. The overall system for blind RTE is described in
Sec. IV and simulation results are provided by Sec. V. The
paper concludes with a summary in Sec. VL.

II. NEw ML ESTIMATOR

A reverberant speech signal z(k) is modeled as a convolu-
tion of a speech signal s(k) with a time-varying RIR h(n, k)
of length L,

L1

> s(k—n)-h(n, k) (1)

n=0

z(k) =

with discrete time index k& and sample index 7. If a speech
pause begins at an instant k — L,

~0
dk—m{#o

the delayed reverberant part of the signal d(k) can be observed,
since

for n=0,1,..., L, —1

2
aLh_17 ()

for n = L,,...

Lo—1 Lp—1
2(k) =Y s(k—mn)-hnk)+ Y stk—mn)-h(nk) 3
n=0 n=L,

~0 = d(k)

assuming that h(n, k) # 0 for at least one value L, <1 < L.
The envelope of the reverberant component d(k) is typically
exponentially decaying and, thus, modeled as follows

dV (k) = Av(k) e ? T (k) (4)

2209



2018 26th European Signal Processing Conference (EUSIPCO)

with amplitude A > 0, decay rate p, unit step sequence €(k),
and sampling period Ty = 1/f;. v(k) represents a sequence
of i.i.d. standard-normally distributed random variables with
N(0,1). Eq. (4) is a coarse approximation of the reverberant
sound decay and, at the same time, represents a simple
statistical model for the RIR which considers only the effects
of late reflections and models them as diffuse noise, e.g., [6].
The relation to the RT is given by, e.g., [10]

3 __ 6.908
p log;o(e) p

The model of Eq. (4) serves as basis for various ML-based RT
estimators [10], [11], [15], [16], [27], see also [28].

In the following, an ML estimator for RT estimation is
derived from a novel modified probabilistic model of the sound
decay which directly leads to a closed-form solution. The
magnitude of the sound decay |dr(n2 )(k)| is modeled as

Too =

®)

dP (k)| = Aw(k) e T (k) (6)

with £k € {0,1,...,N — 1}, real amplitude factor A =
exp{a} and w(k) denoting a sequence of N i.i.d. log-normally
distributed random variables. The model of Eq. (6) can be
rewritten as

A2 ()] = e P T en B (1)

=exp{a+ Bk +n(k)}e(k) (7)
————’
=y(k)
with 3 = —pT;. The noise term n(k) denotes a sequence

of N 1i.i.d. random variables following a normal distribution
N(0,0?). The log-likelihood function for an observation y =

[y(O),y(l), s 7y(N - 1)]T is given by
N-1 - 2
k=0

®)

The ML estimate & for the parameter « for a given observation
y is obtained by

N N-1 A '
8&202<Zy(k’)_d—5k> =0 9

k=0

1 N-—1
= QN<Z

3 y(k>Bk>.

(10)
k=0

The ML estimate 3 for the parameter [ is derived accordingly

np:aB) _ 1 (NS0 s ame) L
05 02<Z(y(k) M)k)o (11

k=0

Table 1
Number of required arithmetic operations of the proposed ML estimator in
comparison to the iterative schemes of [11] and [16].

l ‘ Multiplications ‘ Summations ‘ Divisions
New ML estimator TN +6 TN +5 3
ML estimator of [11] | N(3I+1)+21 | 2N —1)I -
ML estimator of [16] (N+8)J+ N (N+6)J J

Combining Eq. (10) and Eq. (12) leads after some manipula-
tions to
N—-1

N-1
2(2N-1)
i k 13
TNEN+1) kz y(k N +1) kzzo y(k)  (3)
R 6 N— N-1
=— k) + k
= NN+ D k:oy() N(N— N+1 s y(k
(14)
The estimated RT is obtained by means of Eq. (5):
~ —3T. T
Too = =———— ~ —6.908 — (15)
p logy(e)

Table I compares the number of required arithmetic oper-
ations of the proposed ML estimator with the so-called fast
block algorithm presented in [11] and the approach of [16]
where the likelihood function is evaluated for J discrete values
of the decay rate to find approximately its maximum. The
proposed ML estimator needs the logarithm of the magnitude
of a detected sound decay |d(k)|,
via look-up tables or a Taylor series approximation. The use
of a third-order Taylor series approximation turned out to be
sufficient for this purpose and is hence considered in Table I
for the new estimator as well as the ML estimator of [16].

In [11], it is suggested that about I = 5 iterations are needed
for a properly tuned step size parameter (which still needs to
be confirmed in practice). The approach of [16] to determine
the ML-estimate is also used in [27], where it has been shown
that good results can be achieved with a search over J = 10
values for the decay rate. However, the evaluation for discrete
values does not guarantee that a (global) maximum is found.

The proposed closed-form solution features the lowest com-
plexity of all listed ML estimators where the global maximum
of the likelihood function is found in one step without the need
for parameter tuning as in [11].

It should be noted that Table I only lists the operations to de-
termine a single ML-estimate but not the overall complexity of
the respective algorithms for RTE. The overall computational
complexity of the approach of [16] is significantly lower and
the estimation accuracy higher than for the method presented
in [11] due to an efficient pre-selection scheme for the sound
decays.

III. CRAMER-RAO LOWER BOUND (CRLB)

N-1
A 6 ~
= (= k(y(k) — &) The derived estimators of Eq. (13) and Eq. (14) are unbiased
N(N-1)2N-1) L . . 5
k=0 since it is easily shown that F{&} = « and E{f} = (. A
(12) " Jower bound for the variance can be obtained in this case by
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the CRLB. Calculating the inverse of the Fisher information
matrix for the derived ML estimator leads to [29]

*Inp(y;a, ) 8*Inp(y; ., B)

-1 _ da? dadp
B 8Inp(y; o, B)  O*Inp(y; v, )
dB0a 032
N(N -1 !
_ A % 16
T o2 |N(N-1) N(N-1)2N-1) (16)
2 6
2@N-1) 6
2 N(Jlf6+ 1) N({\QH- 1) (17)
N(N+1) N(N2-1)

It follows from Eq. (17) that the CRLB for the variance of the
estimator for 3 is given by

A 12 o2
>
var{3} > NS (18)
After some calculations, it can be shown that
dlnp(y; o, B)
O & —o
=Ta0s |- 19
) {6 - /3} )
B

with &, (3, and J g given by Eq. (13), Eq. (14), and Eq. (16),
respectively. Thus, the derived ML estimator for the parameter
£ from a model decay y(k) attains the CRLB and is hence
(statistically) efficient, cf., [29].

As shown in [10], [28], the ML estimators based on the
model of Eq.(4) [10], [11], [16] also reach the CRLB but
they are only asymptotically unbiased, whereas the proposed
approach is a minimum variance unbiased (MVU) estimator
for a finite observation length N.

IV. BLIND RT ESTIMATION

The overall algorithm to estimate the RT is based on [27].
The noisy and reverberant speech signal is first denoised using
the spectral minimum mean-square error (MMSE) estimator of
[30]. For this, a discrete Fourier transform (DFT) of transform
length 512 and half-overlapping frames are considered. The
needed noise power spectral density (PSD) is obtained by the
MMSE-based estimator proposed in [31].

The denoised signal is split into g = N, - - - , Nocr SUbbands
Y, (k) by means of a 1/3-octave filter-bank using the design
described in [24]. The first ny subbands are not considered
since they have a very narrow bandwidth and, hence, provide
low signal energy only. Each subband signal is processed in
signal frames of M samples shifted by M sample instants

z,(A,m) =Y, (AMa +m) with m=0,1,...,M -1
(20)

and frame index A € N. In a first step, a pre-selection is
conducted for each subband signal i to detect potential frames
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with sound decays, cf., Eq. (3). For this, the current frame
x, (A, m) is divided into Ly = M /P € N sub-frames

ful\LE) =2,(MIP + k)

of length P withx € {0,1,...,P—1}andl € {0,1,..., Li—
1}. It is then tested for frame A whether the energy, maximum
and minimum value of a sub-frame f,,(\, [, k) deviate relative
to the successive sub-frame f,(A,l+ 1, k) according to

2

P-1 P—1
w- > fENLE)> Y AN+ 1K) (22a)
k=0 k=0
w-max {f,(\, [, k)} > max {f,(A\, 1+ 1,K)} (22b)
w-min{f,(A\, L, k)} <min{f,(A\, I+ 1,x)} (22¢)

for [ = 0,1,...,Lf — 2 and weighting factor 0 < w < 1
to control the required decay. If the conditions of Eq. (22)
are fulfilled for [ > lmin consecutive sub-frames, a possible
sound decay is detected within a frame. In this case, the RT is
calculated from the segment composed of these [ consecutive
sub-frames

yu(i) = In(|z,(\,3)| +6) with i =0,1,...,]P -1 (23)

with 0 < § < 1 by means of Eq. (14) and Eq. (15), where
X marks a frame in which a sound decay is detected. If no
sound decay is detected, the next signal frame x, (A, m) is
tested for a decay. A new ML estimate is used to update a
histogram calculated for the latest Ky ML estimates of the RT.
The RT value associated with the maximum of the histogram is
taken as instantaneous estimate 7A'6(5n5t) (11, A). The variance for
the instantaneous estimate '?60(% 5\) is reduced by recursive

smoothing

Tool. A) =7 - Teo(. A = 1)+ (1= 9) - Teg™ (. ) 24)
with forgetting factor 0 < v < 1. If no decay was detected,
7230(“3 )‘) = 7-60(,u7)‘ - 1) and 7230(”; /\) = 7;30(/")‘) other-
wise.

The fullband estimate for the RT is obtained by a weighted
averaging of all subband estimates

N,
N 1 oo ~

Teo(\) = ——— E A) Teo (g, A 25
60(A) Now — w1 1 [w#() 6o(k:A),  (25)

which will then obviously mask a possibly given frequency
dependency of the RT. The weighting factors w,, () are given
by the ratio of the subband signal energy to the sum of all
considered subband energies calculated for signal segments of
length Ly,

Ly—1
Y YA Ma +1)
i=0

wu(A) = N Lol (26)
> > Y2(AMa +1)
p=Tq =0

with 1 = Mo, - - -, Noet. This weighting is motivated by the
rationale that a low signal energy in a subband is assumed to
be associated with increased variance of the estimate.
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Table 11
Algorithmic parameters.

M‘MA‘P‘lmin‘Lf‘w
4923 | 137 [ 547 | 3 |9 |1

Table III
Estimation performance of different ML-based RT estimators.

Algorithm | Bias [ MSE | 5 |
RT estimator of [16] | -0.05 0.11 0.38
RT estimator of [27] | -0.11 | 0.09 | 0.67
New RT estimator -0.13 | 0.09 | 0.69

The devised algorithm allows to estimate a time-varying
RT. If this is not needed, as ;for the simulations in Sec.V,
the average of all estimates T4o(A) can be used to reduce
the variance of the estimate and the weights of Eq. (26) are
calculated for the entire signal duration.

V. SIMULATION RESULTS

The proposed algorithm is compared with the closely-
related ML-based RT estimators presented in [16] (without fast
adaptation) and [27]. The algorithmic parameters of Table II
are used for all three approaches to ease the comparison
of the proposed ML estimator. A bin size of 0.1s and bin
centers 0.2s, 0.3s,...,1.1s are used for the histogram of
RT estimates. For the evaluation, the single-channel evaluation
(Eval) dataset of the ACE Challenge [24], [25] was generated
according to [32]. This dataset contains 4500 noisy, reverber-
ant speech signals with a sampling frequency of f; = 16 kHz.
The recordings are obtained for different acoustic environ-
ments with varying DRRs and signal-to-noise ratios (SNRs)
of —1dB, 12dB and 18 dB. For all considered approaches, the
mean of the time-varying RT estimates is taken as RT estimate
for each recording.

As in [25], the evaluation of the estimation accuracy is done
by means of the bias, the mean-square error (MSE) and the
Pearson correlation coefficient p, between the RT estimates
and ground-truth values. The obtained values are listed in
Table III. The approach of [16] achieves the lowest bias but
features also the lowest value for p,, i.e., this approach shows
the lowest correlation between the estimates and ground truth
for all considered algorithms. The proposed approach features
a lower MSE than the approach of [16] and a marginally higher
bias and same MSE than the approach of [27]." Thereby, the
correlation between the estimated RTs and ground-truth values
is significantly higher than for the approach of [16] and slightly
higher than for the approach of [27].

A comparison of the execution times of the respective
MATLAB implementations (on an Intel Core i7 processor) is

I'The values for the RT estimator of [27] in Table III are not identical to
those listed in [25] since the random noise used to generate the ACE evaluation
dataset is not identical to the random noise used to generate the evaluation
dataset of the ACE Challenge, see also [32].
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taken as a rough assessment for the computational complexity
of the algorithms.” The approach of [27] (which was optimized
w.r.t. estimation accuracy but not computational complexity
for the ACE Challenge) achieves a higher estimation accuracy
in contrast to [16], but its execution time was about 10
times higher, mainly due to the calculation of the RT within
subbands. The estimation performance of the new approach is
similar than for the approach of [27], but the execution time
is only about 3 times higher than for the approach of [16].

The computational complexity of the approach in [16] can
be reduced by using the new closed-form ML estimator. An
evaluation of this modified approach by means of the Eval
dataset led to similar results for the estimation accuracy as
listed in Table Il for the original approach of [16], but a
reduction of the execution time by about 40%. Thus, the new
closed-form ML estimator achieves a significant reduction of
the computational complexity compared to previous ML-based
RT estimators, while achieving the same (or even slightly
better) estimation accuracy.

It should be noted that the algorithm presented in [27]
has scored among the best in the ACE-Challenge for single-
channel RT estimation as detailed in [25] where a more
comprehensive comparison of various RT estimators can be
found.

VI. CONCLUSIONS

A novel method for ML-based RT estimation is proposed.
In contrast to related ML-based blind RT estimators [10],
[11], [15], [16], it is derived from a modified statistical model
for the sound decay which leads to a simple closed-form
solution for the ML estimates. This results in a significant
lower computational complexity compared to previous ML-
based RT estimators, which use iterative schemes [11] or a
search over a finite set of decay rates [16] to determine the
ML estimate. Moreover, it is shown that the underlying ML
estimator to determine the decay rate is an MVU estimator for
observation intervals of finite length, which is not the case for
current ML-based RT estimators. An evaluation of the new
approach for the evaluation dataset of the ACE Challenge
shows that the proposed RT estimator achieves a similar esti-
mation accuracy but with a significantly lower computational
complexity compared to the ML-based RT estimator of [27],
which scored among the best at the ACE Challenge for single-
channel RT estimation. The estimation and incorporation of
a priori knowledge about the RT is a promising approach
to further improve the estimation accuracy of the presented
estimator.
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