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Abstract—Recently, there has been interest in graph signal
processing. We consider the problem of a bandlimited graph
signal estimation (denoising) from single-bit samples obtained at
each graph node. The samples before quantization are affected
by zero-mean additive white Gaussian noise of known variance.
Using Banach’s contraction mapping theorem on complete metric
spaces, we develop a recursive algorithm for bandlimited graph
signal estimation. For our recursive algorithm, we show that
the expected mean-squared error between the graph signal and
its estimate is proportional to the bandwidth of the signal and
inversely proportional to the size of the graph. We also consider
the problem of choosing the nodes to sample based on the
properties of graph Laplacian eigenvectors to minimize the mean-
squared error of the estimate. Numerical tests with synthetic
signals demonstrate the effectiveness of our estimation algorithm
for Erdos-Rényi (ER) graphs, Barabisi-Albert (BA) graphs, and
Minnesota road-network graph.

Index Terms—graph signal processing, quantization, estima-
tion, sampling

I. INTRODUCTION

Graph signal processing (GSP) studies signals defined on
the nodes of a graph [1], [2]. The pairwise relationship
between graph signal values at various nodes is captured by
the edges of the graph, and the strength of the relationship is
reflected in the edge weight. The growth of GSP has been
motivated by the need to represent and analyze large data
sets arising in various applications like social networks [3],
transport networks [4], sensor networks [5], brain signals [6],
power networks [7], and image processing [8]. Concepts
of signal processing such as the Fourier transform [2] are
extended to GSP via spectral graph theory [2], [9], [10].

It is observed that a large number of real world graph signals
are approximately bandlimited [2]. The problem of sampling
and estimation of a bandlimited graph signal has been recently
studied [11], [12]. We consider the problem of a bandlimited
graph signal estimation (denoising) based on its single-bit sam-
ples taken at each graph node. The samples before quantization
are affected by zero-mean additive white Gaussian noise of
known variance. In classical signal processing, the problem of
continuous-time signal reconstruction from coarsely quantized
samples is well known [13]-[18]. While working with single-
bit signal samples, Masry obtained a mean square error of
O(1/K?/3), where K is the sampling rate. In Masry’s method,
the smoothness and not the bandlimitedness of the signal being
sampled was used [13]. By exploiting the bandlimitedness
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of signal being sampled, Kumar and Prabhakaran obtained
a maximum mean-squared error of O(1/K’) for bandlimited
signals [19].

Main contributions: (i) Using Banach’s contraction mapping
theorem, we develop an iterative algorithm to estimate a
bandlimited graph signal from its single-bit quantized noise-
affected samples [20]. Let B be the bandwidth of a graph
signal and N be the size of the graph. An expected mean-
squared error of O(B/N) is shown in this work, which is the
counterpart of the result by Kumar and Prabhakaran [19]. (ii)
A bandlimited signal can also be obtained by subsampling on
the nodes. Based on the the lower order eigenvectors of the
Laplacian matrix [21], we will present a sampling set selection
strategy which is better than random sampling. Numerical
simulations with synthetic signals verify the analytical results
for Erdos-Rényi (ER) graphs, Barabasi-Albert (BA) graphs,
and Minnesota road-network graph [22].

Outline: In Sec. II, we have given an overview of graph
signal processing pertinent to the sampling problem. Our
problem setup is described in Sec. III. In Sec. IV, the proposed
estimation algorithm is presented with abridged proofs. In
Sec. V, the sampling set selection scheme is given. In Sec. VI,
we have verified the results via simulations. Finally, we
conclude in Sec. VII.

II. REVIEW OF GRAPH SIGNAL PROCESSING

Consider an unweighted graph G of N nodes with node
set NV = {1,2,...,N} and a set of undirected edges & =
{(é,7) : i is connected to j}. The real edge weights form
the symmetric adjacency matrix. More generally, define the
graph shift operator (GSO) S as an N x N matrix having the
same sparsity pattern as the graph G. Defining a suitable and
robust GSO is a crucial problem in GSP [23], [24]. In this
work, the graph Laplacian is used as the GSO [1]. The graph
Laplacian is symmetric for an undirected graph and thus has a
set of real orthonormal eigenvectors. It can be decomposed as
S = UAUT. Columns of the U matrix are the eigenvectors
of S. Let the eigenvector corresponding to the I™ smallest
eigenvalue of S be denoted by ;. A graph signal is defined as
a function from the set of nodes to the set of N dimensional
reals, i.e., § : N' — RY [1]. The graph signal can also be
viewed as a vector in R™V. The i entry of 7 is the signal on
the ™ node of the graph.
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The graph Fourier transform of a graph signal g is defined
as its expansion in terms of the eigenvectors of S [2]

) N
0= gy,

=1

le{1,2,..,N}.
The inverse graph Fourier transform is then given by
N
gy =Y gy,

=1

ie{l,2,..,N}.
For B € {1,2,.., N}, a graph signal is said to be bandlimited
with bandwidth B [11], if its graph Fourier transform satisfies

g1y =0, forall [ > B.

IITI. SIGNAL AND SAMPLING MODEL

Random variables will be denoted by uppercase letters (e.g.,
X ) and its realization will be denoted by the corresponding
lowercase letters (e.g., ). We consider bounded and bandlim-
ited signals on a general graph. The signal g(7) on node i lies

in [—1,1] and is corrupted with addmve white Gaussian noise
(AWGN) W of known variance o2. Additional AWGN Wd of
variance o~ is added to dither the signal for reconstruction.
Dithering and quantization is a classical topic [25]. In our
sampling model illustrated in Fig. 1, single-bit samples of the
signal ¢ on each node of the graph is recorded, i.e.,

; - , 1
X(i) = ll(g’(z') F W) + Wai) > 0) -5
o 1((G(3) + W () + Wa(i)) >0) — 3 L X®

W (i) + Wali)
Fig. 1. The graph signal sampling scheme is illustrated.

The error metric is taken as the expected mean-square
distortion between the original signal ¢ and its estimate G| _pj;.

MSE =E|||§ — él-bit”%}

IV. OUR ALGORITHM FOR SIGNAL ESTIMATION

Using a linear transformation, we convert the observed
single-bit samples & to a bandlimited estimate i of the
‘companded’ version of the signal §. This bandlimited estimate
i/ is then inverted to estimate the original g. The inversion
process is non-trivial, and is the core problem tackled by
our algorithm. The companding function is the cumulative
distribution function (CDF) of the noise. Dithering by W, is
necessary for the estimation of the signal g, while ensuring
stability against noise addition (see Sec. IV).

Let [':= (F(§) — 3). Then by the definition of X

—

E[X] =1

Consider the matrix P that projects a vector to the subspace
spanned by the B eigenvectors of S corresponding to the B
smallest eigenvalues. Let Ug = [, Us, ..., @p]. Then P is
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given by UgUg'. The projection matrix P is the ideal low

pass graph filter with bandwidth B [2]. Let iy = PZ. Then
E[Y] = PE[X] = P/

Proposition 1. The average variance of elements in Y is
O(B/N).

Proof. By definition ( )€ {34} Forany 1 <i <N,
var(X (i)) < 1. From i = P, we have,
N B
gn) =3 (D astm)ii(h)) 7))

Since W and Wy are (respectively) i.i.d., the elements of X
are independent. So,

3} 1L /& 2
varl¥ ) < 33 (Y m)i()

<

Averaging over n, we get

sz?

as the vectors #; are unit norm. O

From the unbiased estimate Y of P/ = P(F(g) — 3), with
an average variance of O(B/N), an estimate for § will be ob-
tained. The underlying technique uses the Banach’s fixed point
theorem along with contraction mapping [20]. This approach
is inspired from the work of Kumar and Prabhakaran [19].

Consider the set of bounded graph signals

Sp = {1 : |iit])e < 1}

Now we define a contraction mapping 7" : Sp — Sp which
will be used to obtain an estimate of ¢ from g. The following
function is used in the contraction map to restrict the dynamic
range of the argument to [—1,1] as ||§||cc < 1 is assumed:

clip[z] := {;n(z)

Definition 1. Define the map T as:

T(m) := clip {7Pf+ P (m — <F(m) - ;)) } .

if [z|<1

otherwise
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Observe that ¢ is a solution (fixed point) of the equation
T'(mi) = m. With gy = 0 the following recursion is defined:

- . 1

Grr1 = T(Gi) := clip{yPl + P (g — v(F(d) — 3}

Proposition 2. The mapping T is a contraction on the set Sp
with 12 distance as the metric.

Proof. Note that T is closed on Sp as the clip function ensures
that the [°° norm of the signal gy, is restricted to [0, 1]. Define

7 =PI+ P [gk —v(F(gGr) — %)] Then,

|71 — Tl = [[P[gh — G2 — Y(F(G1) — F(g2))]ll2- (D)

Since ||Pl2 =1, so

Im—@MSwﬁ—ﬁm—v
or |7 — 7ol < [T =7 flleo (g1 — g2)ll2

where f(z) is the derivative of F'(z), i.e., f(z) is the probabil-
ity density of the noise. The clip function reduces maximum
distance [19], so

[[clip(71) — clip(72)]2 < [|[71 — 72 ]|2.
Next, note that

[T(7) = T(72)ll2 = [|elip(71) — clip(72)|l2
<1 =fllsoll(Gr — g2)ll2

Define o = ||1 — vf||c, Where f(0) > f(z) > f(£1). For
T to be a contraction, we require 0 < o < 1. This is ensured
by restricting ~y to (0, f(21)) It is also required that f((l)) <1,
which is ensured by a sufficiently large variance in Wy O

It can be seen by substitution that g is a fixed point of T
By the uniqueness of fixed point in a contraction mapping in
a complete metric space, ¢ is the only fixed point.

In the above analysis, we took perfect samples PI. Next,
estimation error in g will be upper bounded, if an estimate of
PE ie., Y is used. Consider the recursion:

5 > 5 o1
Gry1 = clip{“YY +P(Gr —(F(Gy) - 5))}

Let the limit of this recursive mapping be G 1-bit- We will now
derive a bound on + IE)[H@ 1-bit—7]|3]. Consider two recursions,
one using Y having G 1-bit as its limit, and the other using Pl
having ¢ as its limit:

L B . 1
Ri =Y + P[Gr1 — v(F(Gr-1) — 5)]
1

5)]-

7 = 7PI+ Plge-1 — 7 (F(Gra)
Being interested in the distortion, we consider
Ry —i% = y(Y — PI)

(Gr1 — Gr1) <1 - (

F(Gk-1)

3 —fw%_n>>]
(Gr1 — Gr1)
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Using the Minkowski inequality for the I, norm [20],
|Bx = 7illa < AIIY = Pllla + a|Pll2| Gro1 — Gr1ll2
<AIY =Pllls + | Gr1 — Fu1ll2
Squaring both sides and using Cauchy Schwartz inequality
1B — 73 < 292)1Y — PlI3 + 20%|Grms — Gl
Now consider the following mean square difference,
I7(Grr) = T(Gien) 3
= |llelip(£)] — [elip(7)][13
< IR — 7l
< 29|V — Pll3 + 207 Gies — G I3
Taking expectation on both sides in the above equation,
E[|T(Gr-1) = T(Gk-1)3] <
2Y°E[|[Y — Pl3] + 20°E[[|G—1 — G 13]
Since T(Gi—1) — T(i—1) = Gk — G, 0
E([|x — Fell3] < 24*E[|]Y — PIj3]
+20°E[| G-t — G 3]

For the recursion to converge to a fixed point, we require that

1
2
L 2
o <3 (2)
and then
o o 29BNV - P
— a3 < 2
khjgoE[\\Gk grll2] < (1 - 2a2)
L o 2PE[Y - Pl
) 2
or E[|Gpit — §ll3] < (1—2a2)

Averaging over all nodes and using the result from Proposi-
tion 1, we get,

N
1 - 272 B

— ENGi4i — dl2] < ——L— —.

The choice of parameter v is done such that the error is
minimum while adhering to the condition in (2). As every
component of the signal gy, is restricted to [—1, 1], (2) trans-
lates to the following condition on the parameter ~:

-1
<a=]|1 or

1
V2 V2’
V2 fl@) ~7 V2! Fla)
In this interval, f(a) attains maxima at 0 and minima at +1,
(1 1) L <(1+1) .
V2 i V2 7o)

For larger noise variance, the noise PDF f(x) has a smaller
dynamic range, for x in [—1,1]. Such a 7 is guaranteed to
exist if sufficient amount of dithering is done. This justifies the
role of dithering. The constant +y is set according to the noise
variance and does not depend on N. Thus, we have established
that the mean square error of estimation depends as O(B/N).
Numerical tests in Sec. VI demonstrate this result.

Va € [-1,1].
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Fig. 2. (a) log;q of mean square error v/s log;y of number of nodes for two graphs: BA and ER and different noise variances. (b) log;, of mean square
error v/s log;, of bandwidth of signal for two graphs: BA and ER and different noise variances. (c) Mean square error v/s log of number of sampled nodes
for two graphs: BA and Minnesota road network; comparison between random sampling and sampling with the proposed strategy.

V. SUBSAMPLER DESIGN

Consider the scenario where we can sample only a part of
the node set and have to estimate the signal on all nodes. This
problem has been studied extensively, e.g., in [11], [12]. The
usual setting has simplifying assumptions such as bandlimited
or piece-wise constant or globally smooth signals [11]. Here
we obtain single bit recordings. The sampled signal ¥ has
no such property; it is a non-linear function of noise affected
underlying signal g. We propose a sampling strategy aimed
at minimizing the mean square error in ¢ as an estimate of
PI. Recall that iy = P&. Thus, we are interested only in
the component of Z that lies in the subspace spanned by the
eigenvectors of U having the B smallest eigenvalues, i.e., the
low-pass component of £ with bandwidth B.

It is observed in [21], [11] that for large complex graphs, the
lower order eigenvectors are highly localized. The authors of
[21] have used the inverse participation ratio (IPR) to quantify
the localization and have studied it on various datasets. The
energy concentration ratio (ECR) is defined in [11] as the
smallest fraction of nodes that account for 95% of the signal’s
energy. ECR, which lies in (0,1], is small if the signal is
energy-concentrated. It is reported in [11] that for bandlimited
signals on complex networks, the ECR is usually small.

To minimize the mean square error in g, we sample the
nodes that account for most of its energy. The graph Fourier
transform of ¢/, i.e., gj can be given by the following:

§(b) = Yy @(5)T(j), ifb< B
. 0, otherwise

Definition 2. We define the strength of a node (NS) for the
case of single bit recordings as a function of bandwidth B as:

B
= i)

b=1
Let ¢ = {i: node i is sampled} be the set of sampled nodes.
Since Z(j) € {—1, 1}, we assume the elements of Z corre-

sponding to nodes that are not sampled as the unbiased value
i.e., zero. Thus, we get the following sampled signal:

7 (.o dZU) JEd
s(J) : {Q i¢o
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Define 3 = PZ,. Its graph Fourier transform is:
2 (b) o Z{j;jed)} ﬁb(])f(J)a ifb<B
' 0, otherwise

As the graph Fourier transform preserves energy, the mean
square error due to subsampling can be given as:

G- 7B = 16— I3
B 2
-y 2 (X wa)

b=1  j:j¢¢

Since Z(j) € {—3, 3}, using the Cauchy-Schwartz inequality

Lig-ai< () s 5 a
b= 1{JJ¢¢>}
_( |¢|> Z Z
{j:ige} b=1
- (A2 3w
{7:789}

To minimize the error, we choose the node subset ¢ such that
(Zj:j@ NS(j,B)) is minimum. In other words, we sample
the nodes with the highest node strength for bandwidth B.

VI

Experiment 1. In this test, we verify the O(B/N) depen-
dence of the mean square error. We consider two types of
graphs: Erdos-Rényi (ER) and Barabdési-Albert (BA) graphs.
For ER graphs, the edge-presence probability p is taken as
0.1. In the BA graphs, a new node attaches to 4 existing
nodes. The network starts to evolve from a 10-node clique.
Part (a) describes dependence of MSE on N for fixed B and
part (b) describes its dependence on B for fixed N. In part (a),
synthetic signals of bandwidth B = 10 are considered. Five
graphs of sizes N = 100, 200, 400, 800, 1600 are generated
from both ER and BA models. In part (b), the size of the
graph is taken as N = 1000 and 5 signals of bandwidth
B =8,12,18, 27,40 are considered. The signals are generated
such that the non-zero graph frequency components are i.i.d.
zero mean Gaussian random variables. Further, the signals are
scaled to a have a dynamic range within [—1, 1] as required by

NUMERICAL TESTS
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the signal model. Noise is AWGN of variance o2 = 0.05,0.1
in two different cases in both parts of the experiment. The
reported results correspond to average over 100 instances.

In Fig. 2.(a), the variation of log19(MSE) with log10(N) is
plotted. The slopes of the best-fit lines of the four curves are:
ER graph (02 = 0.05) : —0.96; ER graph (02 = 0.1) : —1.00,
BA graph (62 = 0.05) : —1.15; BA graph (62 = 0.1) : —1.12.

In Fig. 2.(b), the variation of log1o(MSE) with log1(B) is

plotted. The slopes of the best-fit lines of the four curves are:
ER graph (02 = 0.05) : 1.02; ER graph (02 = 0.1) : 1.04,
BA graph (02 = 0.05) : 0.97; BA graph (02 = 0.1) : 1.00.
This confirms the results of section IV.
Experiment 2. This test illustrates the merit of the subsampler
design proposed in section V. We consider the Minnesota road
network (N = 2645) [22] and a BA graph (N = 2645). A
synthetic signal of bandwidth B = 20 and dynamic range
within [—1, 1] is generated similar to the previous experiment.
For both graphs, we consider 5 cases in which a sampling
set of sizes, |¢| = 400,600,900, 1350, 2000 is taken. Noise
is AWGN of variance 02 = 0.01. Mean square error cor-
responding to 2 schemes is reported: (a) random sampling,
(b) sampling with given strategy. The results reported in
Fig. 2.(c) correspond to the error averaged over 100 instances.
The proposed sampling strategy works better than random
sampling for all 5 values of |¢| considered for both graphs. It is
interesting to note that the error due to subsampling is smaller
in the BA graph as compared to the road map graph due to
the presence of hubs [26] and thus, greater localization of the
lower order eigenvectors. Thus, it is sufficient to sample only
a few prominent nodes with high node strength, N.S(j, B).

VII. CONCLUSIONS

In this paper, we have given an algorithm to estimate a ban-
dlimited graph signal using single bit recordings from graph
nodes. The signal # consisting of the single bit recordings
is converted to an estimate ¢ of a low-pass filtered version
of a companded form of the signal to be estimated, g. The
estimate %/ is inverted, using a contraction mapping 7', to get
an estimate gj_p;; of §. The expected value of the mean square
error is shown to be of O(B/N). The result is validated by
simulations on synthetic signals. We have also considered the
case of subsampling. Leveraging on the observation that the
lower order eigenvectors of the Laplacian are highly localized,
a notion of strength of a node is defined. A subsampler design
is given to minimize the mean square error in the estimate.

ACKNOWLEDGMENT

Part of the work was supported by Bharti Centre for
Communication in IIT Bombay.

REFERENCES

[1] D. 1. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Proc. Magazine, vol. 30, no. 3, pp. 83-98, 2013.

[2] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE transactions on signal processing, vol. 61, no. 7, pp. 1644-1656,
2013.

ISBN 978-90-827970-1-5 © EURASIP 2018

(3]
[4]

(5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

911

J. Scott, Social network analysis. Sage, 2017.

V.  Ekambaram, “Graph structured data viewed through
a fourier lens,” Ph.D. dissertation, EECS  Department,
University of California, Berkeley, Dec 2013. http://www2.

eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-209.html

A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Accelerated
sensor position selection using graph localization operator,” in Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 5890-5894.

L. Goldsberry, W. Huang, N. F. Wymbs, S. T. Grafton, D. S. Bassett,
and A. Ribeiro, “Brain signal analytics from graph signal processing
perspective,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, pp. 851-855.
A. J. Holmgren, “Using graph models to analyze the vulnerability of
electric power networks,” Risk analysis, vol. 26, no. 4, pp. 955-969,
2006.

M. S. Kotzagiannidis and P. L. Dragotti, “Sparse graph signal recon-
struction and image processing on circulant graphs,” in Signal and
Information Processing (GlobalSIP), 2014 IEEE Global Conference on.
IEEE, 2014, pp. 923-927.

D. A. Spielman, “Spectral graph theory and its applications,” in Foun-
dations of Computer Science, 2007. FOCS’07. 48th Annual IEEE
Symposium on. 1EEE, 2007, pp. 29-38.
F. R. Chung, Spectral graph theory.
1997, no. 92.

S. Chen, R. Varma, A. Singh, and J. Kovacevié¢, “Signal recovery on
graphs: Fundamental limits of sampling strategies,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 2, no. 4, pp.
539-554, 2016.

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” IEEE Transactions on Signal
Processing, vol. 64, no. 7, pp. 1832-1843, 2016.

E. Masry, “The reconstruction of analog signals from the sign of their
noisy samples,” IEEE Transactions on Information Theory, vol. 27,
no. 6, pp. 735-745, November 1981.

R. Gray, “Oversampled sigma-delta modulation,” IEEE Transactions on
Communications, vol. 35, no. 5, pp. 481-489, 1987.

1. Daubechies and R. DeVore, “Approximating a bandlimited function
using very coarsely quantized data: A family of stable sigma-delta
modulators of arbitrary order,” Annals of mathematics, vol. 158, no. 2,
pp. 679-710, 2003.

T. Thong and J. McNames, “Nonlinear reconstruction of over-sampled
coarsely quantized signals,” in Circuits and Systems, 2002. MWSCAS-
2002. The 2002 45th Midwest Symposium on, vol. 2. 1EEE, 2002, pp.
II-11.

A. Kumar, P. Ishwar, and K. Ramchandran, “Dithered A/D conversion
of smooth non-bandlimited signals,” I[EEE Trans. on Signal Processing,
vol. 58, no. 5, pp. 2654-2666, May 2010.

, “High-resolution distributed sampling of bandlimited fields with
low-precision sensors,” IEEE Trans. on Information Theory, vol. 57,
no. 1, pp. 476-492, Jan. 2011.

A. Kumar and V. M. Prabhakaran, “Estimation of bandlimited signals
from the signs of noisy samples,” in Acoustics, Speech and Signal

American Mathematical Soc.,

Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 5815-5819.
E. Kreyszig, Introductory functional analysis with applications. wiley

New York, 1989, vol. 1.

M. Cucuringu and M. W. Mahoney, “Localization on low-order eigen-
vectors of data matrices,” arXiv preprint arXiv:1109.1355, 2011.

D. Gleich, “The matlabbgl matlab library.” https
://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/index.html
A. Gavili and X.-P. Zhang, “On the shift operator, graph frequency,
and optimal filtering in graph signal processing,” IEEE Transactions on
Signal Processing, vol. 65, no. 23, pp. 6303-6318, 2017.

B. Girault, P. Gongalves, and E. Fleury, “Translation on graphs: An
isometric shift operator,” IEEE Signal Processing Letters, vol. 22, no. 12,
pp. 2416-2420, 2015.

M. F. Wagdy, “Effect of various dither forms on quantization errors
of ideal a/d converters,” IEEE Transactions on Instrumentation and
Measurement, vol. 38, no. 4, pp. 850-855, 1989.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509-512, 1999.



