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Abstract—In this paper, a novel sparsity based framework
is proposed for accurate spatial sound field reproduction in
spherical harmonic domain. The proposed framework can effec-
tively reduce the number of loudspeakers required to reproduce
the desired sound field using higher order ambisonics (HOA)
over a fixed listening area. Although HOA provides accurate
reproduction of spatial sound, it has a disadvantage in terms of
the restriction on the area of sound reproduction. This area can
be increased with the increase in the number of loudspeakers
during reproduction. In order to limit the use of a large number
of loudspeakers the sparse nature of the weight vector in the HOA
signal model is utilized in this work. The problem of obtaining
the weight vector is first formulated as a constrained optimization
problem which is difficult to solve due to orthogonality property
of the spherical harmonic matrix. This problem is therefore
reformulated to exploit the sparse nature of the weight vector. The
solution is then obtained by using the Bregman iteration method.
Experiments on sound field reproduction in free space using the
proposed sparsity based method are conducted using loudspeaker
arrays. Performance improvements are noted when compared to
least squares and compressed sensing methods in terms of sound
field reproduction accuracy, subjective, and objective evaluations.

I. INTRODUCTION

Reproduction of spatial sound field, with high accuracy
within a desired area is a fundamental problem in spatial
audio processing. Plane wave decomposition using spherical
harmonics provides a basis for rendering in 3D space. Some
of the popular reproductions techniques based on loudspeaker
arrays are higher-order Ambisonics (HOA) [1], wave field syn-
thesis (WFS) [2], and model approaches such as vector base
amplitude panning (VBAP) [3]. These techniques spatially
encode audio signals, and decode them to generate feeds to
loudspeaker arrays or headphones. Decoding of HOA signal
can be done by matching the spherical harmonics modes
produced by the loudspeakers with the modes of ambisonic
sound field decomposition [4]–[7]. However in such decoding
schemes there is an undesired variation in the loudness levels,
which can be overcome by preserving the decoded energy [8],
maintaining constant angular spread across source direction
[9]. These rendering techniques suffer from smaller error free
reproduction area (sweet spot) [6], [10]. With higher frequency
this sweet spot reduces to smaller than the radius of human
head. However with higher order ambisonics, spatial resolution
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can be improved [8], [11], [12]. Another approach is to sample
the spherical harmonics at the loudspeaker positions, and
obtain a suitable panning function [13]–[16]. Such methods
need a dense sampling for accurate spatial sound field repro-
duction. Such dense sampling requirements intuitively leads to
an investigation into sparsity based methods for solving this
problem in an efficient manner.

In this paper, a sparsity based framework is proposed to
compute loudspeaker weights and subsequently the speaker
feeds of a loudspeaker array for rendering spatial sound fields.
This frame work is based on the fact that loudspeakers act as
point sources in near field [10]. The theoretical contribution of
this work lies in the development of a constrained optimiza-
tion framework to formulate and compute the sparse weight
vector corresponding to the loudspeaker feeds. Additionally
this method can be used in the accurate reproduction of
sound fields at any listening position in free space using a
reduced number of loudspeakers. Performance comparisons
using reduced number of loudspeakers, with results obtained
by direct matrix inversion (HOA Reconstruction), least square
(LS), and compressed sensing(CS) [5], [7] methods are indeed
motivating.

The rest of paper is organized as follows, Section 2 intro-
duces the system model for sound field reproduction in free
space and describes the proposed method for finding optimum
weights of loudspeaker array. In Section 3 performance of
proposed method is evaluated and compared with existing
methods. Section 4 concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section the HOA based system model for sound
field reproduction is first developed. The weight vector in
the system model is assumed to be sparse and a constrained
optimization problem is formulated to compute it. Bregman
iteration method is then used solve this problem and obtain
the weights for loudspeaker feeds. An algorithm for sound
field rendering using the proposed method is also discussed in
this context.

A. System Model for Sound Field Reproduction using Loud-
speaker Array

Consider a normalized plane wave having frequency f in the
direction Θs , (θs, φs). Where θ and φ describes the elevation
from top and azimuth respectively. The incident sound field
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at a point r = (r,Θ) due to a plane wave in the direction Θs

expressed as [10]

p(k; r) = e−ikr =
∞∑
n=0

n∑
m=−n

4πinjn(kr)[Y mn (Θs)]
∗Y mn (Θ)

(1)
where Ymn (Θs) = [Y 0

0 (Θs), Y
−1
1 (Θs), . . . , Y

m
N (Θs)]

T , is the
spherical harmonic coefficients in which n = 1, . . . , N and
m = −n, . . . , n be the order and mode respectively. The
spherical harmonics are defined as

Y mn (Θq) =
1

2

√
(2n+ 1)(n− |m|)!

π(n+ |m|)!
P |m|n (cos θq)e

imφq (2)

where Pmn (·) is the associated Legendre function, jn(·) is the
nth order spherical Bessel function of first kind, and related
to ordinary Bessel function as jn(x) =

√
π
2xJn+1/2(x).

Reproduction of a sound field with an array of loudspeakers
arranged on sphere having radius rp can be given as [10]

T (k; r) =
∞∑
n=0

n∑
m=−n

Xn(kr)
L∑
l=1

a(k; Θl)[Y
m
n (Θl)]

∗Y mn (Θ)

(3)
where Xn(kr) is defined as

Xn(kr) =

{
4π(−i)khn(krp)jn(kr) for r < rp
4π(−i)khn(kr)jn(krp) for r > rp

(4)

and hn(x) =
√

π
2x [Jn+1/2(x)− iJn+1/2(x)] is the nth order

spherical Hankel function of second kind, Jn(·) is the nth
order Bessel function of second kind. ‖ · ‖ represents the
Euclidean norm. Equating (1) and (3) and writing in matrix
form

Pa = u (5)

Truncating the order of spherical harmonics to N in [10],
the loudspeaker weights can be obtained by solving the linear
expression in (5).

B. Problem Formulation

Computation of the loudspeaker weights a(k; Θl) in (5) can
be formulated as a constrained optimization problem of the
form

min
a

‖a‖p s.t. Pa = u (6)

where ‖ · ‖p is the lp vector norm, defined as ‖a‖p =
(
∑
i |ai|p)1/p. The solution for the weighting coefficients

depends on the choice of norms. Selecting p = 2 leads to
the conventional least square (LS) minimization problem. The
LS solution yields a closed form expression given by

a = PH(PPH + λI)−1u (7)
where I is the identity matrix and λ is the regularization
parameter. When λ = 0, the solution is the pseudoinverse
of the spherical harmonics matrix, which is also known as
HOA based decoding in literature. Although HOA provides
accurate reproduction of spatial sound, it has a disadvantage
in terms of the restriction on the area of sound reproduction.
This area can be increased with the increase in the number
of loudspeakers during reproduction. Inorder to limit the use

of a large number of loudspeakers the sparse nature of the
weight vector in the HOA signal model can be exploited. One
of the standard approaches to obtain a sparse solution in this
context is compressed sensing (CS). In this approach the l1
norm is minimized. This problem can be modeled by relaxing
the equality constraint using error tolerance ε ≥ 0 as [17]

min
a

‖a‖1 s.t. ‖Pa− u‖2 ≤ ε (8)
This method gives the optimized result in far field where
the sound sources act as plane wave sources. In spatial
sound field productions the arrangement of loudspeakers make
the speakers act as point source which further decrease the
performance of these methods.

C. Development of Sparse Iterative Framework for Decoding

In order to develop the proposed sparsity based framework
we reformulate the problem in (8) as a LASSO formulation

min
a

1

2
‖Pa− u‖22 + λ‖a‖1 (9)

With increase in the number of loudspeakers the panning
vector a becomes sparse. On the other hand the matrix P
containing the spherical harmonics also becomes sparse in the
spatial domain. Thus it can be expressed as

P = DR (10)
where D ∈ C(N+1)2×τ is an overcomplete dictionary matrix
and R ∈ Rτ×L is the sparse coefficient matrix. The Spherical
harmonic matrix exhibits orthogonality i.e. PPH ≈ I . A
necessary condition is that the matrix P should orthonormal
i.e. RTR = I. This condition is further incorporated in the
problem formulation as

min
P,R

1
2‖u−Pa‖22 + λ‖R‖1

s.t. P = DR

RTR = I

a = (PHP)−1PHu (11)
The above problem involves orthogonality constraints and the
formulation therefore becomes a non convex problem. For
solving such problems iterative methods have been proposed
in [18]–[20]. The Bregman iteration method is used herein to
solve for the weights under question.

1) Bregman Iteration method for Loudspeaker Array Gain
Calculation: The above problem is solved using Bregman
splitting iteration formulation in line with our previous work
in [19]. The problem in (11) is first rewritten as

1. (Pn,Rn) = min
P,R

1

2
‖u−Pa‖22 + λ‖R‖1

+
α

2
‖R−Ψn−1 + Bn−1‖2F

s.t. P = DR

2. Ψn = min
Ψ

α

2
‖Ψ− (Rn + Bn−1)‖2F , (12)

s.t. ΨTΨ = I

3. Bn = Bn−1 + Rn −Ψn

4. a = (PHP)−1PHu
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In this formulation the subproblem in (12) is an unconstrained
convex problem, and Ψ has a closed from solution given by
Ψopt = UVT−1/2VT ,where U = Rn+Bn−1, and T is a di-
agonal matrix satisfying SVD factorization UTU = VTVT .
The spherical harmonic function Y 0

0 (Θ) has a constant value
irrespective of the location (azimuth and elevation). Hence
additional linear constraint can be imposed in the formulation
as

−1T ε ≤ (PT
ne1 − 1TY0

0) ≤ 1T ε (13)

where e1 = [1, . . . , 0]T is an eigen vector. This constraint
provides an initial information about spherical harmonic co-
efficient matrix P and helps in obtaining an optimal solution.
Applying these constraints a standard optimization problem
can be formulated as

min
a,R

1
2‖u−Pa‖22 + λ‖R‖1 + α

2 ‖R−Ψn−1 + Bn−1‖2F
s.t. P = DR

RTR = I

−1T ε ≤ (PT
ne1 − 1TY0

0) ≤ 1T ε (14)
It is important to note that orthonormal constraints also appear
in the above formulation making the objective function non-
convex. Algorithm1 describes the complete steps involved in
obtaining the optimum weights and the corresponding feeds
for the array of loudspeakers in a sparse manner.

Algorithm 1 Algorithm for sound field rendering using the
proposed sparsity based method

1: Choose the radius of the reproduction area and corre-
sponding spherical harmonic order N

2: Obtain the observations u
3: Create an overcomplete dictionary D with required reso-

lution in θ and φ
4: Choose the optimum parameter α, λ,and ε
5: Choose the number of iterations ittr
6: Initialize a0

7: Initialize matrix Ψ0 randomly and B0 to a matrix of zeros
8: for n := 1 to ittr do
9: Solve the minimization problem in (12) to find Rn

10: Assign U = Rn + Bn−1

11: Compute the SVD formUTU = VTVT

12: Update Ψn = UVT−1/2VT

13: Update Bn = Bn−1 + Rn −Ψn

14: Update Pn = DRn

15: Compute loudspeaker array gain a = (PHP)−1PHu
16: end for
17: Locate the loudspeaker position arranged on the sphere in

accordance with the dictionary matrix D.
18: Obtain the the speaker feeds from original sound a for

rendering its spatial version.

III. PERFORMANCE EVALUATION

The performance of the proposed sparse iterative (SI)
method is evaluated using sound field reconstruction analysis,

subjective, and objective evaluations. The performance evalu-
ation results are also compared to HOA, LS, and conventional
compressive sensing methods.

A. Loudspeaker Array Configuration

For conducting sound field reconstruction experiments, an
array setup of 130 loudspeakers is simulated. All these loud-
speakers are placed uniformly over a sphere of radius 1m in an
icosahedron pattern. Weights for loudspeakers are calculated
using three techniques and it is observed that few entries of
the weight vectors are zero. It signifies that actual number of
speakers is less than the fully populated loudspeaker array.
LS method uses only 123 loudspeakers to reproduce the
sound field where as compressed sensing and proposed sparse
iterative method uses 81 and 76 loudspeakers respectively in
the experiments performed herein. The placement of the active
speakers are therefore not uniform and are shown in figure 1a,
1b, and 1c respectively. In equation (14), ε, λ was fixed to 10−2

and 0.02 respectively.

B. Experimental Results

1) Reconstructed Sound Field Analysis: In the experimental
simulation, we consider a monochromatic plane wave of
frequency 2kHz, incident from [θ, φ] = [45◦, 30◦] with a
reproduction sphere of radius x0 = 0.2m. The loudspeaker
weights were obtained by equation (7), (8) and (14) for LS,
CS and sparse iterative (SI) method respectively. With these
weights the sound pressures are obtained by using equation
(3) and plotted in Fig.2 in an area 0.64m2 centered around
the listening position.Figures 2 show density plots both for
real and imaginary parts. Acoustic pressure less than -1
are showing black, greater than 1 are showing white, and
pressure levels in between are appropriately shaded. In these
figures the circle inside the plots represents the desired error
free reconstruction area (sweet spot) where we compare the
reproduction techniques. The reconstructed sound field by the
proposed SI method is more closer to the reference sound in
comparison to other methods. The normalization error for each
technique is calculated as

e(k) =

∫
|S(x; k)− T (x; k)|2dx̂∫

|S(x; k)|2dx̂
(15)

where the integration is taken over the surface of reproduction
sphere. These error values are shown in Table-I for different
radii of reproduction area around the listening spot for various
sound field reconstruction methods.

2) Objective Evaluation: For objective evaluations, the
loudspeaker gains are obtained by the different methods such
as least square (7), compressed sensing (8), and sparse iterative
(14). Perceptual Evaluation of Audio Quality (PEAQ) [21]
and Perceptual Similarity Measure (PMS) [22] measures are
used to quantify the spatial audio quality. These measures
are provided in Table-II. From Table-II it can be concluded
the spatial sound reproduced using proposed sparse iterative
method is perceptually better than the other methods compared
herein. The Average Error Distribution (AED) for the various
sound field methods are also computed and plotted in Fig.3.
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Fig. 1: The estimated loudspeaker positions illustrated on a sphere (top row) and their corresponding weights (bottom row)
for CS, LS, and proposed sparse iterative methods respectively.
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Fig. 2: Sound pressure plots for various methods (top and bottom row represents the imaginary and real part of reconstructed
sound field respectively). The inner circle represents the area of perceptual interest (x0 = 0.2m) for a frequency of 2kHz.

TABLE I: Decoding error obtained for sound field reconstruction by varying radii of spherical region of interest

x0(in m) → 0.10 0.15 0.20 0.25 0.30
Methods ↓ Real Imag Real Imag Real Imag Real Imag Real Imag

HOA 0.1061 0.0819 0.2058 0.5036 0.2788 0.5671 0.2964 0.6357 0.3342 0.5783
CS 0.0488 0.6423 0.1271 0.4713 0.1984 0.4851 0.2067 0.5315 0.2490 0.4891
LS 0.0106 0.0129 0.0528 0.0520 0.1675 0.1252 0.2789 0.2186 0.3002 0.2869
SI 9.21E-04 4.71E-05 0.0091 0.0018 0.0645 0.0188 0.1422 0.0716 0.1660 0.1327

The error variance for the proposed sparse iterative method is
less in comparison to other methods as shown in Fig.3.

3) Subjective Evaluation: The subjective evaluation is
quantified as Mean Opinion Scores (MOS). The reproduced
sound was perceived by ten subjects and these subjects were
asked to rate the spatial attributes on a scale of 1 to 5, where
very annoying was indicated by 1 and imperceptible by 5. The
spatial attributes used are listed below [23]
• Naturalness: How true to life the audio listening was.

• Presence: Presence in audio source environment.
• Preference: Degree of pleasantness or harshness.
• Source Envelopment: Sound being all around a person.
• Perception of motion: The precision and correctness with

which the trajectory of the source is perceived.

The scores obtained from the different subjects were averaged
to obtain MOS and are listed in Table-III. A t-test is also
performed to compare the audio attributes of spatial sound
reproduced by different methods and shown in Fig.4.
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Fig. 3: Average Error Distributions for CS, LS, and SI methods
respectively

TABLE II: PEAQ and PSM scores of reconstructed sound
sources.

Method PEAQ DI PSM PSMt
LS -3.0281 -1.2274 0.9954 0.939
CS -3.1247 -1.3667 0.9945 0.9192
SI -2.8460 -0.9946 0.9965 0.953

TABLE III: Subjective evaluation results for various sound
field reproduction methods.

Method→ CS LS SI Reference
Attributes ↓ µ σ2 µ σ2 µ σ2 µ σ2

Naturalness 3.2 0.22 2.9 0.66 3.4 0.76 3.4 0.43
Presence 2.5 0.51 3.0 1.01 3.1 0.51 3.1 0.69

Preference 2.0 0.37 2.4 0.44 2.8 0.97 2.6 1.07
Source

Envelopment 3.0 0.43 2.8 0.65 3.4 0.56 3.1 0.70

Perception
of Motion 2.5 0.61 2.6 1.62 2.9 0.42 2.3 1.28
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Fig. 4: T-test results for various sound field reproduction
methods.

IV. CONCLUSION

In this work, a constrained optimization problem is formu-
lated to determine the sparse panning vector to reconstruct
the sound field accurately in spherical harmonic domain.
The results are compared with conventional HOA techniques.
Analysis of reconstructed sound field indicates that sparse
iterative method performs better in term of spatial resolution
and area of reconstruction. Extension of the proposed method
to varechoic environment and improving the computational
complexity will be investigated in future.
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