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Abstract—In this paper, we propose a sound event encoder for
converting sound events into their onomatopoeic representations.
The proposed method uses connectionist temporal classification
(CTC) as an end-to-end approach to directly convert a sequence
of feature vectors of each sound event into a corresponding
onomatopoeic word representation which accurately represents
each sound and can be intuitively understood. Moreover, to
address the issue of the ambiguity of onomatopoeic repre-
sentations among different individuals, we develop a database
of sound events and their corresponding typical onomatopoeic
representations as accepted by multiple listeners. To evaluate
the performance of our proposed method, we conduct objective
and subjective evaluations. Experimental results demonstrate
that the proposed sound event encoder is capable of converting
sound events into their onomatopoeic representations with a
74.5% subjective acceptability rating, and that use of typical
onomatopoeic representations, as approved by multiple subjects,
yields significant improvement, resulting in an acceptability rate
of 81.8%.

Index Terms—connectionist temporal classification, sound
event, onomatopoeia, sound transcription

I. INTRODUCTION

Acoustic wave caused by a specific physical event can
be referred to as a sound event. Many studies related to
sound events have been conducted in recent years, such as
the development of sound event detection and classification
techniques [1] which use of sound events to understand sound
environments. These techniques have great potential for use in
practical applications, such as multimedia retrieval [2], sound
environment analysis [3], and monitoring systems [4]. On
the other hand, since sound events are nonverbal, they do
not always have symbolic representations that can be used
to different them, in the way a written language is used
to represent speech sounds. Therefore, it can be difficult to
represent various kinds of sound events in a unified framework.
It would be useful if we could develop a consistent and
universal symbolic representation system for arbitrary sound
events.

In this study, we focus on onomatopoeic representation as a
possible system for symbolic representation of sound events.
Onomatopoeic representation is based on human perception
of sound events and imitation of their sounds using lexical

phrases, e.g., the description of the sound of a firecracker
or gunshot using the word “bang” in English. Although the
phonology of the onomatopoeic representation correlates to
acoustic sounds, it can have many variations resulting from
differences in the perceptions of individuals or cultural in-
fluences background. For example, in Japan “wan wan” is
used to represent the sound of a dog’s bark, while people
in English-speaking countries will usually use “bow wow” or
“woof woof.” Commonly used onomatopoeic representations
are transmitted together with culture, and therefore they often
differ over different regions, but they usually have some
characteristics in common, such as common vowels, consonant
types or number of syllables [5]. Onomatopoeic representation
is intuitively understandable, making it possible for us to
represent even new or unknown sounds like voice imita-
tion [6]. It is often used as an effective expression technique
in comics [7]. A method of searching for sound effects or
music using onomatopoeic representations as a search query
has been proposed [8] [9]. It is expected that the development
of a technique to convert arbitrary sound events into their
corresponding onomatopoeic representations could be useful
in various existing applications, and could also have great
potential to lead to new applications.

In this paper, we propose an end-to-end sound event encoder
to convert arbitrary sound event signals into their correspond-
ing onomatopoeic representations by employing Connectionist
Temporal Classification (CTC) to directly convert a sequence
of acoustic feature vectors extracted from a given sound
event signal into a phoneme sequence corresponding to an
onomatopoeic representation. Moreover, to address the issue
of the ambiguity of onomatopoeic representations among
different individuals, we develop a database consisting of
various sound events and their corresponding onomatopoeic
representations as accepted by multiple listeners. A subjective
evaluation is then conducted to investigate the effectiveness
of the proposed sound event encoder and demonstrate that
1) it is capable of converting sound events into acceptable
onomatopoeic representations, 2) by having the onomatopoeic
representations in our database vetted by multiple subjects, we
are able to achieve a significant improvement in performance.
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II. RELATED WORK

There are two main approaches for converting sound events
into their corresponding onomatopoeic representations, 1) a
classification approach, and 2) an automatic speech recognition
(ASR) approach. In the classification approach, possible ono-
matopoeic representations need to be defined in advance [10].
A given sound event signal is then converted into one of the
possible representations using a classifier. As a result, it is
difficult to handle undefined sound events using a classification
approach. The ASR approach is more flexible. As an example
of a typical method based on this approach, Ishihara et al.
proposed a system for the conversion of a sound event into an
onomatopoeic representation in Japanese [11]. Assuming that
one Japanese syllable explicitly corresponds to a single acous-
tic waveform segment, a given waveform is first segmented us-
ing various acoustic methods. Each waveform segment is then
classified into a possible Japanese syllable using a Gaussian
mixture model and a hidden Markov model (GMM-HMM)
with mel frequency cepstrum coefficients (MFCC). Although
this method can handle arbitrary sound events, it is difficult to
properly segment the waveform signals, and final conversion
performance is severely affected by segmentation accuracy
since this is a sequential process.

III. DATABASE CONSTRUCTION

A. Onomatopoeia database

To realize our onomatopoeia conversion system, we first
needed to construct an onomatopoeia database. We used 9,720
sound event samples selected from the RWCP sound scene
database [12], which contained 100 kinds of sounds such as
the sound of hitting a piece of wood with a mallet, the sound
of an electronic toy, a person whistling, and so on. Each sound
sample was converted into a 16-bit, 16 kHz monaural signal.
One adult, Japanese male listened to these sound samples
and manually transcribed each of them using the following
annotation rules:

• Transcribe each sound into Japanese katakana symbols,
• Follow a standard form of Japanese onomatopoeic rep-

resentation, e.g., use standard Japanese syllables, where
each syllable consists of a vowel or a pair of a consonant
and a vowel, do not start a geminate consonant or a
syllabic nasal (N), and so on,

• Use a geminate consonant at the end of crunching sounds,
• Use long vowels at the end of a sustaining sound,
• Do not use long vowels consecutively,
• For a repeating sound, repeat the corresponding Japanese

syllables,
• Do not try to represent changes in pitch.
As a result of this process, we obtained 492 unique ono-

matopoeic representations.

B. Database of typical onomatopoeic representations

Because suitable onomatopoeic representations depend on
individual interpretations, representations assigned by one
person may not be accepted by others. However, Oishi et

al. [5] reported that typical onomatopoeic representations
which are widely accepted do exist. In order to obtain more
widely accepted onomatopoeic representations, we conducted
a double-check procedure using 10 male and female subjects
as follows:

1. Divide the onomatopoeia database into 10 subsets,
2. Assign one subset to each subject,
3. Have subjects listen to each sound sample and judge

whether the assigned onomatopoeic representation is ac-
ceptable,

4. If it is acceptable, move on to the next sample,
5. If it is not acceptable, assign a more suitable ono-

matopoeic representation to the sample, then move on
to the next sample,

6. Repeat steps 3-5 to evaluate all of the samples in the
subset,

7. Define the acceptable onomatopoeic representations as
“typical” onomatopoeic representations for the corre-
sponding sound samples,

8. For sound samples which were determined to have had
unacceptable original onomatopoeic representations, con-
duct the entire process from step 1 using only the newly
assign onomatopoeic representations and a new subject.

Note that a different subset was assigned to each subject for the
subsequent evaluations. After repeating this procedure three
times, we obtained onomatopoeic representations for all of
the sound samples which were accepted by at least two of
the subjects. The resulting database of typical onomatopoeic
representations for 695 unique sounds was then used as the
database for our proposed system.

IV. CTC-BASED SOUND EVENT ENCODER SYSTEM

A. System overview

An overview of our proposed method, separated into train-
ing and test phases, is shown in Fig. 1. In the training phase,
the sound event signal is divided into 40ms windows with 50
% overlap to calculate a 40-dimensional log mel filter bank
feature. The statistics of the extracted features are calculated
over training data to perform normalization, making mean and
variance of each dimension of the features 0 and 1, respec-
tively. Then a bidirectional long short-term memory recurrent
neural network (BLSTM) [13], [14] with projection layers
[15], [16] (Fig. 2) is trained using the normalized features and
the onomatopoeia labels on the basis of the objective function
of connectionist temporal classification (CTC) process. In the
test phase, as in the training phase, features are calculated from
the sound event signal and normalized using the statistics of
the training data. Finally, best path decoding of CTC using the
normalized features is performed, resulting in the estimated
onomatopoeic representations.

B. Connectionist Temporal Classification

CTC is a framework which can handle differences in the
lengths of input and output sequences. As a result, it can
be applied to our unsegmented sequences. In CTC, blank
symbols (“ ”) are added to the set of output symbols to allow
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Fig. 1. Overview of proposed method

an output sequence to use a redundant description to adjust
its length to equal that of the input sequence. For example,
redundant descriptions with a length of three corresponding
to the sequence (a b) are ( a b), (a a b), (a b b), (a b), and
(a b ). Thus, there are many redundant descriptions of the
output sequence π. We define a mapping function β(π → l)
to remove redundancy by deleting consecutive symbols and
blank symbols from the redundant descriptions.

The posterior probability of the redundant output se-
quence π = [π1, π2, · · · , πT ] for the input sequence X =
[x1, x2, · · · , xT ] is calculated using the following equation:

p(π|X) =
T∏

t=1

p(πt|X), (1)

where p(πt|X) is the posterior probability of the symbol πt

at time t, which is modeled by the BLSTM as follows:

p(πt|X) = BLSTMt(X). (2)

The posterior probability of output sequence l is obtained as
the sum of the output probabilities for all of the redundant
output sequences as follows:

p(l|X) =
∑

π∈β−1(l)

T∏
t=1

p(πt|X). (3)

In training, the parameters of the BLSTM w are optimized
using back-propagation through time (BPTT) [17] by mini-
mizing the following objective function:

E(w) = − log
∑

π∈β−1(l)

T∏
t=1

p(πt|X). (4)

Fig. 2. Structure of BLSTM with projection layers

The gradient of the objective function can be efficiently
calculated with the forward-backward algorithm.

During conversion, the output sequence l̂ is estimated with
respect to the given acoustic feature sequence X using best
path decoding as follows:

l̂ = β(arg max
π

p(π|X)). (5)

V. EXPERIMENTAL EVALUATION

A. Experimental conditions

We divide our database of typical onomatopoeia transcrip-
tions, constructed as described in Section III, into three groups
of 9,120 samples, 500 samples, and 100 samples to form a
training set, a validation set, and an evaluation set, respectively.
The onomatopoeic transcriptions are converted from katakana
character sequences into phoneme sequences. A phoneme set
is composed of vowels and consonants, with the exception
of geminate consonants, which are represented by “q”, long
vowels, which are represented by “:” (e.g. “a:”), and syllabic
nasal sounds which are represented by “N.”

We then conduct objective and subjective evaluations to
investigate the effectiveness of the proposed onomatopoeia
conversion method. In the objective evaluation, we measure
conversion accuracy using two evaluation metrics, a word
error rate (WER) and a phoneme error rate (PER), which are
calculated as follows:

WER =
Ncorrect

Nword
, (6)
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TABLE I
EXPERIMENTAL CONDITIONS

# layers 3
Window size 40 ms
Shift size 20 ms
BLSTM cell 512
Learning rate 0.001
Initial scale 0.001
Gradient clipping norm 5
Optimizer Adam [18]
Time steps 350
Batch size 128
Epochs 20

TABLE II
RESULTS OF OBJECTIVE EVALUATION

WER [%] PER [%]
CTC 46.00 20.49
GMM-HMM 100.00 111.28

PER =
S + I +D

Nphoneme
, (7)

where Ncorrect is the number of onomatopoeic representations

correctly converted from the sound events, and Nword is
the total number of the onomatopoeic representations in the
evaluation set. S, I, and D correspond to the number of
substitution errors, insertion errors, and deletion errors in
edit distance, respectively. Nphoneme is the total number of
phonemes included in the onomatopoeic representations in the
evaluation set.

In the subjective evaluation, the onomatopoeic representa-
tions of the sound events are evaluated on the basis of whether
or not they are accepted by the subjects. After each sound
event sample is presented to the subject, the subject first
transcribe it into an onomatopoeic representation to confirm
the most suitable representation for him or her. After that, the
onomatopoeic representation to be evaluated is presented to
the subject, and he or she indicate whether or not it is an
acceptable onomatopoeic representation for the corresponding
sound event sample. Eight subjects, Japanese men and women
in their twenties, participated in the evaluation.

The training conditions for the proposed sound event en-
coder model are shown in Table I. These settings are deter-
mined using a grid search so that the best possible performance
is obtained using the objective evaluation metrics.

B. Experimental results of objective evaluation

As a reference for comparison, we also develop a sound
event encoder based on GMM-HMM [19] using a Japanese
phoneme recognition network. The results of the objective
evaluation of the proposed and comparison methods are shown
in Table II.

In comparison with the GMM-HMM-based sound event
encoder, both WER and PER are significantly reduced when
using the proposed method. Examples of some of the ono-
matopoeic transcriptions of several sound events using each

TABLE III
EXAMPLES OF CONVERTED ONOMATOPOEIA

Ground truth CTC GMM-HMM
p i p o N p i p o N d a: hy a r a p u z u:
sh a r a r a r a sh a r a r a ch i h i h i u u u N
k a ch a: k o t a k a N o n i e e r a a a N
k o: N k o: N k i d u g u d u ky u ky a
p u k i N k o N n i g a g a p e i i
ch i N ch i N u ts u
gy u: N gy u: N a h e q
b a q b a q p u
t o N t o N n i n u a a q
j i: j i j i j i j i j i j i p a N
j i r i j i r i j i r i j i r i r e N
ch i q ch i a

TABLE IV
RESULTS OF SUBJECTIVE EVALUATION

Transcriptions Acceptable [%] Unacceptable [%]
One subject OD 74.0 26.0
CTC-OD 74.5 25.5
CTC-TOD 81.8* 18.2*
Self-labeled 91.3 8.7

method are shown in Table III. Unnatural Japanese ono-
matopoeic representations (e.g., phoneme sequences including
redundant consecutive vowels) are observed in the results of
the GMM-HMM-based sound event encoder. On the other
hand, these errors are well suppressed by the proposed sound
event encoder thanks to the use of CTC, which allows direct
modeling sequence conversion processing.

C. Experimental results of subjective evaluation

The results of the subjective evaluation experiment are
shown in Table IV. OD represents acceptance results when
using the onomatopoeic representations from the original, one-
person onomatopoeia database. The acceptance rate is 74.0%,
i.e., only 74.0% of the onomatopoeic representations defined
by a single individual are accepted by the other subjects.
On the other hand, CTC-OD shows the results when using
the onomatopoeic representations converted from sound event
samples using the proposed encoder (developed using the
original, single individual onomatopoeic representations). The
acceptability rate is 74.5%, which is almost the same as the
OD results. This confirms that the transcription accuracy of the
proposed encoder is sufficiently high, about the same as hu-
man transcription. When we used the onomatopoeia database
developed through several revisions by multiple subjects, the
acceptability rate of the transcriptions of the proposed sound
event encoder (CTC-TOD) improved to 81.8%, i.e., a 7.3%
improvement, which is a statistically significant (p < 0.05).
Therefore, the use of “typical” onomatopoeic representations
is more effective when transcribing sound events.

To investigate the ambiguity of onomatopoeic representa-
tions among different individuals, examples of several ono-
matopoeic representations of the same sound events, as man-
ually transcribed by five subjects, are shown in Table V. Al-
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TABLE V
ONOMATOPOEIA TRANSCRIPTIONS OF FIVE SUBJECTS

Subject A Subject B Subject C Subject D Subject E
p i N p o: N p i p o N t e r e N p i k o: N p i p o N
sy a r a r a r a ch i r i r i r i N ch i r i N ch i r i N r i N r i N sy a r a r a r a
k a N p a t a ch i N r i N t a q t a r a N k a N k a r a N k a ch a:
t o t o t o t o k o k o q k o k o q t e q t e r e N k a r a q k a r a N k a r a k a r a
k a N k o N t a: N ch i N k o: N

though the onomatopoeic representations of the same sounds
events differ, similar tendencies are observed among them,
e.g., the number of morae is similar, and syllables at the ends
of the transcriptions are also similar. It is expected that these
characteristics, observed among multiple individuals, need to
be modeled in order to define typical onomatopoeic represen-
tations. Moreover, to clarify an upper bound of conversion
accuracy, we conduct another subjective evaluation by asking
the subjects if their own onomatopoeic representations are
acceptable. This evaluation is conducted two months after they
have done the transcriptions. The average result is 91.3%,
shown as “Self-labeled” in Table IV. We have also found that
complex sound events, such as the sound of paper being crum-
pled, are relatively difficult to transcribe onomatopoeically.

Our results suggest that the proposed sound event encoder
is capable of converting most sound events into acceptable
onomatopoeic representations, although there remains room
for further improvement.

VI. CONCLUSIONS

In this paper, we have proposed a connectionist tempo-
ral classification-based sound event encoder for transcribing
sound events into onomatopoeic representations. The proposed
method is an end-to-end approach, meaning it is possible to
apply it to any waveform without preprocessing. In order
to convert sound events into more acceptable onomatopoeic
representations, we developed a database of typical ono-
matopoeic transcriptions by having multiple subjects double-
check each other’s transcriptions. Objective and subjective
evaluation results demonstrated that the proposed method
is capable of converting sound events into acceptable ono-
matopoeic representations and that having multiple subjects
review the transcriptions included in the database yielded
significant improvements.

In future work, we plan to expand our onomatopoeia
database so that our proposed method will be able to transcribe
a wider variety of sound events. Furthermore, we plan to im-
plement a conversion system which can generate multilingual
onomatopoeic representations.
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