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Abstract—We have proposed under JPEG Pleno standardiza-
tion activities a scheme for lenslet image compression, where the
regularities and similarities existing between neighbor angular
views were successfully exploited, achieving competitive results
in the JPEG Pleno core experiments using lenslet data. This
paper proposes improvements on our previous scheme of light
field compression, making our approach more suitable for com-
pression of light fields acquired with dense camera arrays, where
the disparities between farthest views can reach several hundreds
of pixels. We review the functional blocks of the compression
algorithm, replacing and modifying some of the functionality with
more advanced and efficient solutions. Based on our submission
to the JPEG Pleno core experiments, we present and discuss our
results obtained on the Fraunhofer HDCA dataset. Additionally,
we present a new view merging algorithm which substantially
increases the PSNR at all bit rates.

I. INTRODUCTION

Light field and plenoptic imaging are emerging imaging
technologies which are used in a wide range of computer
vision applications, such as virtual reality systems, medical
imaging and robotics. These technologies provide an extension
to the already well established stereo imaging which has for
long been used in inferring scene geometry and depth in
computer vision.

Light fields can also be acquired by using a dense array of
cameras, which are often implemented with a high precision
robot, sampling the view at adjacent locations along both
vertical and horizontal directions [1]. We refer to this type
of setup as high density camera array (HDCA). Compared
to consumer grade light field devices such as Lytro Illum,
HDCA systems provide several orders of magnitude more
data and offer a larger change in perspective along the views.
Nonetheless, the high quality of the individual views and
the precise actuation of the imaging rig provides very high
redundancy between adjacent views.

Recent interest in light field imaging has led JPEG to initiate
the standardization of JPEG Pleno [2][3][4][5]. Based on our
previous work on lossless light field coding [6][7], we have
proposed a similar scheme in JPEG Pleno for lossy light field
compression [8]. By successfully exploiting the similarities
between adjacent angular views we have already achieved
competitive results in JPEG Pleno core experiments for the
lenslet datasets using the scheme from [8].

In this paper we implement several modifications to our
previous light field coding scheme intended to handle both

the geometrical and color redundancy among adjacent views
more efficiently. We study the efficiency of our compression
scheme for encoding the HDCA dataset [1], used in the JPEG
Pleno standardization efforts.

II. LIGHT FIELD CODING SCHEME

HDCA data consists of an array Nh×Nv of adjacent views
with identical dimensions nr × nc. The full set covering the
whole array of views has the indices denoted as a set Γ. In
our scheme the user has to choose first a (very sparse) set of
reference views, with indices denoted as Γref , to be used as
references for encoding the rest of views. We encode the views
at Γref using already existing image coding tools, namely
JPEG 2000. Additionally, we encode a quantized version of
scene depth at each view selected by Γref using [9]. The rest
of the views, having indices in the set denoted Γside = Γ \
Γref , are decoded by exploiting the redundancies between the
views in sets Γref and Γside.

A high quality depth estimation at Γref is necessary in
order to efficiently reconstruct the side views. The importance
of the accuracy of the inferred scene depth increases as the
distance between the reference and side views increases. In our
experiments we use the depth provided in [10][11] for JPEG
Pleno core experiments [12]. Our scheme greatly benefits from
the use of [9] in efficient encoding of the depth.

First we describe the underlying principle for the encoding
scheme. We have used in [8] sparse prediction as a tool to
identify the relevant regressor elements when predicting one
view based on its neighbor views, which is feasible and very
efficient in the case of lenslet images. The success in lenslet
case is due to the small disparities between adjacent views, of
at most one-two pixels. In such a situation, a well designed
template can explore the close pixels and the close views
(in the whole 4D light field domain) to find the relevant
regressors for prediction, with no need of further aligning
the views before prediction. However, in the HDCA case,
a similar approach will require to consider huge candidate
regressor templates. There is one more impediment for our
earlier scheme. In our practical implementation of [8], we have
chosen a template of prediction based on those neighbor views
of the current view, that were already encoded. All views were
encoded by advancing in a certain scanning order of the array
of views (a spiral way from center to boundary). However
this results in a limited random access capability: one has to
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Fig. 1. Block diagram of the encoder.

decode all prior views along the spiral, before being able to
decode the view of interest in a random access application.

In a different configuration, one can decide to encode and
decode most of the views based on a small set of reference
views, which are needed to be decoded prior to decoding any
other view. This configuration, which we call for short random
access configuration, is introducing constraints in the choice
of what type of redundancy can be used: in the spiral case
the encoding is very efficiently done based on neighboring
views, which are extremely similar. In the random access
configuration some of the views will be encoded based on
more distant views, where the correlations are typically weaker
than between neighboring views (the more the viewing angle
is changed, the more the obtained images differ).

In the HDCA case, the corresponding pixel in a reference
view that corresponds to a pixel in the current view is further
apart, and one has to know this disparity for being able to make
an efficient prediction. Hence now the preliminary stage of
warping the reference view for aligning with the current view
is an essential step, which we undertake before applying the
prediction, in a similar way to the sparse prediction of stereo
color images we described in [13]. When several references are
available, each has to be warped to the location of the target
view before combining their warped versions into a prediction.

III. DESCRIPTION OF THE FUNCTIONAL BLOCKS

Fig. 1 illustrates the proposed encoding scheme as a block
diagram. Next, we describe the functional blocks, and for
those that have a correspondent in [8] we briefly make note
of similarities and differences.

The proposed compression scheme is based on our previ-
ous work [8], which divided the encoding process into nine
functional blocks. In this section we review the modifications
to the existing block scheme.

Accessing the rectified light field structure: In the case
of lenslet data considered in [8], the data was accessible in
several forms: lenslet image, non-rectified aperture images,
and rectified aperture images. The HDCA case corresponds

to the last form, and is the easiest, since it does not require
any pre-processing of data before encoding.

In the current scheme, the available views are split into M
reference views, denoted Lref1 , . . . ,LrefM , having indices in
the view-array specified in the M elements of the index set
Γref .

Estimating and quantizing disparity maps: The Block 2 in
[8] performed the disparity estimation and quantization at the
center view only. Here we propose a more flexible approach
by handling an arbitrary number of reference disparity maps.
We consider for exemplification mainly the case of M = 5
color references and disparity maps, which has a great random
access capability: after decoding five references, the access to
any particular view is ensured. In the experiments we have
used the reciprocal depthmaps {Drefm},m = 1 : 5 and the
estimates of the camera positions {Xk,l} provided by [10][11]
for JPEG Pleno core experiments.

We first median filter the reciprocal depth data to enforce
a smoother data surface, which is useful for better depth
image compression, for which we use crack-edge region value
(CERV) encoder [9]. Quantization of this disparity is the next
processing step towards compression, to ensure a flexible rate
distortion of the decoded disparity. Before encoding the depth
at each of the references in Γref we apply Lloyd quantization
using nQ levels. This reduces the initial 16-bit representation
of the depth to a representation with nQ levels distributed
optimally according to the histogram of the disparity image.
By choosing a smaller nQ, the quantization becomes coarser,
and the disparity map can have a more efficient lossless
encoding by [9], but the distortions introduced are higher.
Fig. 2 illustrates the performance of this approach for HDCA
dataset S2, with a varying number of quantization levels. The
PSNR reflects the average over Γref and the bit rate is reported
as bits per pixel.

Disparity and motion vectors estimation for a generic view:
We now describe the process for finding the disparity needed
when predicting a generic view, with indices denoted (k, l).

As a first step towards finding the disparity we have used
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Fig. 2. The average Rate Distortion performance when encoding the HDCA
disparities dataset S2 [10]. For each reference disparity view 10 nonuniform
quantizers were designed having the number of levels nQ = 21, 22, . . . , 210.
The average PSNR and rate obtained by CERV, JPEG 2000, and JPEG-LS at
each nQ are shown in the plot. The R-D point obtained for nQ = 2 is the
left-bottom point and nQ increases in order along the curve.

the simple mechanism presented in [10] for converting the
reciprocal depthmaps for each of the M references to disparity
maps between a reference and a given view. In this process,
the geometrical coordinates of the camera at the reference,
Xrefm , and at the given view Xk,l are used, being estimated
by the method in [11]. This disparity data is anchored at the
reference and we perform a disparity based warping process
to get the disparity data anchored at the view k, l. Since the
disparity data is quantized to nQ levels, we obtain implicitly
a segmentation of the view k, l in nQ non-connected regions.
For each region, the horizontal and vertical displacements of
the region from the color warped image to the true view k, l
are estimated by the block “Find Regions, Motion Vectors” in
Fig. 1. The final warped version Wm

k,l obtained by warping the
color light field reference view Lrefm to the location of the
view (k, l) is obtained by warping with the combined motion
vector and pixel disparity, for each pixel of the reference. Due
to occlusions, not all pixels at the view (k, l) receive a value.
However, since we use M distinct references, the pixels that
are missing in all the views Wm

k,l will be very few. They
will be filled by successive median filtering of the combined
warped image Wk,l, obtained as presented next.

The Block 3 in [8] covers for the estimation of horizon-
tal and vertical disparities between the center and the side
views. Now we use an equivalent of Block 3 as a disparity
refinement step. We note that the functionality of Block 5
from [8], that of generating segmentations for each view is
covered now by the described process of warping of disparity
information, and is marked in Fig. 1 as the block “Collect
Warped Depthmap/Segmentation”.

We stress that by warping we mean simultaneously creating

a warped color image and a warped disparity image, by using
the same movements of the pixels.

Encoding blocks: All the blocks in Fig. 1 that perform
encoding have their output marked in red, signifying that their
outputs are sent to the final bitstream, which is obtained by
multiplexing all the block bitstreams. The final bitstream will
contain also additional metadata.

All the encoding blocks from [8], namely encoding disparity
refinement motion vectors, encoding of depth for reference
views, encoding the predictor parameters are very similar to
the ones that we use in the current scheme.

Reconstructing a side view from available references: In
[8], the Block 8 used to perform the encoding of a side view
using a sparse linear filter (dedicated to each region and view),
which used as regressors at most 8 neighboring views. Having
five references, and their disparities, we replace this with an
approach similar to conventional depth-image-based rendering
for warping each side view conditional on the reference views,
explained in the next section. The main difference to [8] is
the necessity of warping the views prior to prediction. That
introduces also the need of merging various warped views.

IV. PREDICTING AND ENCODING A SIDE VIEW BASED ON
THE REFERENCE VIEWS

The main functionality of the codec is to predict one
view based on the information from the reference views.
We represent in Fig. 1 in more detail this function, which
encompasses the whole right half of Fig. 1, including the
blocks of Warping, Optimally Combine Warped Images, Col-
lect Warped Depthmap/Segmentation, Sparse Region Based
Predictor Design.

A. Warping of disparity

We assume that reciprocal depthmap is encoded only for
views in Γref . For each reference, we obtain its corresponding
disparities, both horizontal and vertical, anchored at the side
view by warping its reciprocal depth. Inverse depth is a floating
point quantity which during warping has to be multiplied by
the horizontal and vertical spacing between the reference and
side view. Rounding the resulting values to integers produces
the integer precision disparity estimate between the views,
which we use for warping.

After obtaining the warped disparity views Gm
k,l for each

m ∈ Γref a proper merging of the results needs to be
performed to obtain Gk,l. The difficulty consists in the fact
that due to occlusions the warping process is not assigning
values to Gm

k,l at each pixel location.
A simple scheme is to arrange the references by their

closeness, in the view array, to the current view (k, l). Then
we pick the closest reference m1 and fill Gk,l with all non-
occluded values from Gm1

k,l ; then proceed and fill only the
missing values in Gk,l with the non-occluded values from
next closest reference m2, and continue the same way until
the last reference. The last remaining missing pixels in Gk,l

will be filled by successive median filtering.
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B. Disparity refinement by motion vectors

The quality of the obtained disparity at the side view is
dependent on the accuracy of the reciprocal depth at the
reference and on the proper scaling with the vertical and
horizontal baselines. These quantities are subject to estimation
and quantization errors, and thus we perform a disparity re-
finement process at each side view for each reference in Γref .
The motion vectors are searched on a small search window,
since the large disparities (values in the order of several
hundred pixels) are approximately known from the reciprocal
depthmap. The refinement process finds small adjustments
specific to each local region at the side view (k, l).

Code length for the disparity refinement motion vectors is
relative to the search radius and the number of unique levels in
initial warped disparity. For one side view with search window
of w×w code length becomes CLMV = nQM log2(w2). The
encoding of these vectors is very similar to the encoding of
the displacements in Block 4 of [8].

C. Least-squares view merging

The fusion method presented in Section IVA is a “hard-
decision” warping, based on the closeness of the reference
views, and it does not make the best use of the fact that each
non-occluded pixel in Wm

k,l contains a noisy estimate of the
corresponding pixel’s value in the side view. We introduce
the selector δmk,l(i, j) which equals 1 for a non-occluded pixel
Wm

k,l(i, j), and 0 otherwise. We use the following algorithm
to merge the warped reference views. Over all warped views
in Γref , obtain for each pixel a classification based on the
number of reference views in which it was a non-occluded
pixel. In our setting we have M reference views in Γref so
overall we have at most 2M classes for each pixel. In Fig. 3
we show by different colors the resulting classes of the pixels,
c = 0, 1, . . . , 2M − 1. For a pixel (i, j) belonging to class c,
we evaluate the merged Wk,l(i, j) as:

Wk,l(i, j)=

M∑
m=1

Wm
k,l(i, j)δ

m
k,l(i, j)θ

c
m,

where the optimal parameters Θc = [θc1, θ
c
2, . . . , θ

c
M ] are

obtained for each class by performing a least-squares design
by minimizing the sum of residuals for every pixel (i, j)
belonging to class c in the model:

Lk,l(i, j)=Wk,l(i, j) + ε(i, j).

D. Sparse filter design

It is the task of the last prediction stage to find which
regressors are useful in a prediction template convolving the
merged warped image Wk,l with a sparse predictor. We
have used the candidate template as a square window with
dimensions 7 × 7 pixels. The design procedure is the same
as in [8], which was operating on the regions having the
same disparity. The only big difference is that in [8] the
convolution was used over several neighbour views, since they
were already well aligned, while here we only perform the
final convolution on Wk,l by a specific sparse predictor.

Fig. 3. Example of the 32 classes considered in view merging for view
(023, 004) in S2.

V. EXPERIMENTAL RESULTS

The original HDCA dataset for JPEG Pleno core exper-
iments consists of four sets, denoted by S2, S6, S9, S10 of
21 × 101 views at 2160 × 3840 resolution. In accordance to
the JPEG Pleno core experiments, we consider only a subset
of 11× 33 views, where each view is cropped center-wise to
Full HD size of 1080×1920. Bit rates reported are total code
lengths divided by the amount of pixels in the subset. For the
experiments the new codec, labeled here as TUT, was used
for encoding the HDCA data set S2.

A. Large set of references in checkerboard arrangement

In this experiment we have used a checkerboard arrange-
ment of the reference views (starting from the top-left corner)
with disparities quantized at nQ = 511 levels. This con-
figuration provides good results at high bit rates. The color
references were encoded by JPEG 2000 and the reciprocal
depthmap was compressed by CERV. Since in [10] are pro-
vided only 5 reciprocal depthmaps, the missing disparities for
the rest of the references were obtained by warping from the
five CERV compressed reciprocal depthmaps (by using the
block “Collect Warped Depthmap/Segmentation”). Only the
baseline of Subsection IVA was used in the codec (Subsections
B, C, and D were not used). The results of PSNRY UV are
shown in Fig. 4. A comparison with encoding all the views by
JPEG 2000 is presented, showing a big improvement by the
TUT method. This comparison is relevant for the use cases
when one may want to use encoding tools only from the
JPEG 2000 system, which is license free, and does not want to
use more advanced video coding methodology, which require
licensing. No comparison with existing light field compression
methods can be shown since there are no public results in the
literature for HDCA dataset.

B. Sparse set of references

In Fig. 5 we present results under same experimental
conditions as above for the case of only 5 references (corners
plus the center of the view array). We present results over
the set S2 for various quantization levels nQ for disparity.
Only the baseline of Subsections IVA was used in the codec
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Fig. 4. Rate-distortion performance for a high-density set of references in
checkerboard configuration for S2.

Fig. 5. Rate-distortion performance for a sparse set of only 5 references for
S2.

(Subsections B, C, and D were not used). Fig. 5 shows the
improvement in performance as nQ increases from 67 to 255.

C. Improvements by each prediction stage

To illustrate the performance of stages IVA, IVB, and IVC
from Section IV we report rate distortion at each of these
stages, reported in Table I. Adding the stage IVB improves
by 0.6 dB and adding the stage IVC improves by more than
2.3 dB at the tested bit rates 0.03, 0.05 bits per pixel. Adding
the stage IVD to the chain IVA+IVB+IVC did not improve
significantly yet, most likely due to implementation issues.

VI. CONCLUSIONS

The new codec presented was shown to obtain favorable
results for the encoding of HDCA data when compared to

TABLE I
COMPARISON OF DIFFERENT STAGES FOR PREDICTION PRESENTED IN

SECTION IV, FOR nq = 128

PSNR
Method BITRATE = 0.03 BITRATE = 0.05
IVA 35.68 35.79
IVA+IVB 36.30 36.42
IVA+IVB+IVC 38.63 39.00

the baseline JPEG 2000. More experiments, under various
experimental conditions, are needed for fine tuning the various
elements of the scheme. The scheme has the potential to
improve when a full rate-distortion procedure will be im-
plemented, while promising results were shown here using
intuitive selections of the parameters.

REFERENCES

[1] M. Ziegler, R. op het Veld, J. Keinert, F. Zilly, “Acquisition System for
Dense Lightfield of Large Scenes,” in 2017 3DTV Conference: The True
Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),
June 2017, pp. 1–4.

[2] ISO/IEC JTC 1/SC29/WG1 JPEG, “JPEG Pleno Call for Proposals on
Light Field Coding,” in ISO/IEC JTC 1/SC29/WG1 JPEG, Doc. N74014,
Jan 2017.

[3] T. Ebrahimi, S. Foessel, F. Pereira, P. Schelkens, “JPEG Pleno: Toward
an Efficient Representation of Visual Reality,” IEEE MultiMedia, vol. 23,
no. 4, pp. 14–20, Oct 2016.

[4] I. Viola and T. Ebrahimi, “Quality Assessment of Compression Solutions
for ICIP 2017 Grand Challenge on Light Field Image Coding,” in 9th
Workshop on Hot Topics in 3D Multimedia (Hot3D), July 2018.

[5] S. Zhao and Z. Chen, “Light field image coding via linear approximation
prior,” in 2017 IEEE International Conference on Image Processing
(ICIP), Sept 2017, pp. 4562–4566.

[6] P. Helin, P. Astola, B. Rao, I. Tabus, “Minimum Description Length
Sparse Modeling and Region Merging for Lossless Plenoptic Image
Compression,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 7, pp. 1146–1161, Oct 2017.

[7] P. Helin, P. Astola, B. Rao, I. Tabus, “Sparse Modelling and Pre-
dictive Coding of Subaperture Images for Lossless Plenoptic Image
Compression,” in 2016 3DTV-Conference: The True Vision - Capture,
Transmission and Display of 3D Video (3DTV-CON), July 2016, pp.
1–4.

[8] I. Tabus, P. Helin, P. Astola, “Lossy Compression of Lenslet Images
from Plenoptic Cameras Combining Sparse Predictive Coding and JPEG
2000,” in 2017 IEEE International Conference on Image Processing
(ICIP), Sept 2017, pp. 4567–4571.

[9] I. Tabus, I. Schiopu, J. Astola, “Context Coding of Depth Map Images
Under the Piecewise-Constant Image Model Representation,” IEEE
Transactions on Image Processing, vol. 22, no. 11, pp. 4195–4210, Nov
2013.

[10] A. Naman, R. Mathew, D. Ruefenacht, D. Taubman, “UNSW Depth
Reciprocal Fields for the HDCA Dataset,” in ISO/IEC JTC 1/SC29/WG1
JPEG, Doc. N78000, Dec 2017.

[11] D. Ruefenacht, A. Naman, R. Mathew, D. Taubman, “Inter-View Com-
pression Framework with Base Anchored Modeling and Inference,” in
ISO/IEC JTC 1/SC29/WG1 JPEG, Doc. N78051, Jan 2018.

[12] ISO/IEC JTC 1/SC29/WG1 JPEG, “Core Experiments Set 2 for JPEG
Pleno,” in ISO/IEC JTC 1/SC29/WG1 JPEG, Doc. N77016, Oct 2017.

[13] I. Tabus, P. Astola, “Sparse Prediction for Compression of Stereo Color
Images Conditional on Constant Disparity Patches,” in 2014 3DTV-
Conference: The True Vision - Capture, Transmission and Display of
3D Video (3DTV-CON), July 2014, pp. 1–4.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1878


