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Abstract—A distributed learning-based algorithm for the lo-
calization of acoustic sources in an acoustic sensor network is
proposed. It is based on estimates of the Coherent-to-Diffuse
Power Ratio (CDR), which serve as feature for the source-
microphone distance, i.e., the range. The relation between the
estimated CDR and the range is learned by using Gaussian
processes for non-parametric regression. The range estimates
obtained from evaluating the regression function are fused
by a weighted least squares estimation, which is implemented
recursively, allowing for a distributed version of the algorithm.
The resulting method is computationally efficient, works in highly
reverberant and noisy scenarios and needs only a small amount
of data shared over the network. The training phase of the
algorithm requires only a few labeled observations. We show the
efficacy of the approach with data obtained from image-source
simulation.

Index Terms—Coherent-to-Diffuse Power Ratio, Gaussian Pro-
cess Regression, Weighted Least Squares, Distributed Algorithm,
Acoustic Sensor Network, Localization

I. INTRODUCTION

Acoustic Sensor Networks (ASNs) allow to increase the
coverage of an area of interest by spatial distribution of the
sensors and according research gained popularity in the signal
processing community [1]. Especially the localization and
tracking of acoustic sources attracted considerable research
efforts [2]. Several approaches have been proposed which
mainly rely on estimates of the Direction of Arrival (DOA)
or the Time Difference of Arrival (TDOA) of the sources
of interest, e.g., triangulation of narrowband DOA estimates
[3], clustering of phase differences between observed signals
by the EM algorithm [4] and a distributed version of this
algorithm in [5]. The performance of DOA-based methods
usually degrades significantly in highly reverberant scenarios
[6], and in distributed sensor networks they suffer from the
problem of ghost sources [7], i.e., false combinations of DOA
estimates. Another group of algorithms estimates the range of
the acoustic source, e.g., by the observed signal energy at the
sensor nodes [8]. The obtained range estimates can be fused by
a Weighted Least Squares (WLS) estimate [9], which can be
implemented in a distributed fashion [10]. However, energy-
based localization methods such as [8] assume a free-field
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propagation model, which is not applicable in enclosures due
to reverberation. The estimation of the range of an acoustic
source is a difficult problem which has been tackled by
approaches based on prior knowledge on the Room Impulse
Responses (RIRs) [11], [12] or physical parameters character-
izing the room [13]. However, this knowledge is usually not
available in practice. Therefore, another class of algorithms has
been developed which avoids the need of this prior knowledge
by a learning phase [14]–[17]. The characteristic properties of
a diffuse sound field can be used to infer distance, e.g., for
calibration of ASNs [18]. The CDR [19], which is the power
ratio of the direct and the diffuse signal components, can be
used as a feature for the range of the acoustic source. However,
due to the lack of knowledge about the room characteristics,
the relation between range and CDR is unknown in practice.
Standard regression approaches like polynomial regression etc.
are not applicable here, because the fitting function is also
unknown. Therefore, we choose a non-parametric approach for
regression, based on Gaussian Processes (GPs), in this paper.
In other disciplines, arising from geostatistics, GP regression is
also known as Kriging [20] and it was used in sensor networks,
e.g., for extending the coverage of the area of interest by
interpolation of sensor observations [21].

In this contribution, we propose a distributed acoustic source
localization scheme based on range estimation using GP
regression to learn the relation between the range of the source
and the estimated CDR. The presented approach for localiza-
tion using the range estimates is formulated as the solution of
a WLS problem and designed in a distributed fashion, which
allows to distribute the computational load over the network
and to produce instantaneous estimates of the source position
based on current observations. The computational complexity
of the algorithm as well as the amount of necessary data
transfer between the nodes is very low.

II. RANGE ESTIMATION

The first part of the algorithm is the collection of training
data and the range estimation by GP regression.

A. Feature Calculation

We assume a set of M sensor nodes, each equipped with
two microphones with spacing dmic,m, distributed over the area
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of interest. The microphone signal xi,m(t) at sensor node m
is modeled as the superposition of the anechoic speech signal
si,m(t) and an additional reverberation/noise signal ni,m(t)

xi,m(t) = si,m(t) + ni,m(t), i ∈ {1, 2}. (2)

The auto/cross Power Spectral Density (PSD) of the micro-
phone signals can be estimated by recursive averaging over
time using a forgetting factor λ

Φ̂(m)
xixj

(l, f) = λΦ̂(m)
xixj

(l−1, f)+(1−λ)Xi,m(l, f)X∗j,m(l, f),

where i, j ∈ {1, 2} and Xi,m, Xj,m are the Short-Time Fourier
Transform (STFT) domain representations of the signals for
time frame l and frequency f , observed at microphone i, j,
respectively. The complex spatial coherence function of the
observed signals is estimated as

Γ̂(m)
x (l, f) =

Φ̂
(m)
x1x2(l, f)√

Φ̂
(m)
x1x1(l, f)Φ̂

(m)
x2x2(l, f)

. (3)

Here, the DOA-independent CDR estimator (1) proposed in
[19] is employed, where the dependency on time frame l and
frequency f is discarded in (1) for a concise notation. The
coherence of a diffuse sound field is given by

Γ(m)
n (f) =

sin(2πfdmic,m/c)

2πfdmic,m/c
(4)

with c as the speed of sound. As the feature of the regression
model, we define the averaged diffuseness

γ̂m =
1

Nt(fmax − fmin + 1)

Nt∑
l=1

fmax∑
f=fmin

1

ĈDRm(l, f) + 1
, (5)

where Nt denotes the number of time frames, and fmin
and fmax defines the minimum and maximum considered
frequency, respectively. Note that γ̂m ∈ [0, 1] follows from
the definition of the feature (5).

B. Non-parametric Regression

The relation between the averaged diffuseness γ̂m and the
range is unknown because the characteristics of the room are
not accessible in general. Therefore, we aim at estimating a
regression function to learn this relation. Since we do not even
know the general shape of the regression function, we use GP
regression [22], because this non-parametric approach does not
require assumptions about the class of a parametric regression
function.

To discriminate between the training and the localization
data, we mark the training data with a tilde (̃·). The nodes
compute the averaged diffuseness γ̃m in the training phase,
equipped with the label of the correct range between source

and node. These labeled training data points are shared
between the nodes. We assume that, at the current node
m, we have received and calculated Ntrain labeled training
points, which are stacked in a vector γ̃m ∈ [0, 1]Ntrain . The
corresponding ranges are stacked in the vector r̃m ∈ RNtrain

+ .
The single training data points are indexed with i and j.

We model the range r̃m,i of training point i available at
node m to be related to the corresponding γ̃m,i by a function
f and to be corrupted by Gaussian noise of zero mean, which
is IID over the training points, i.e.,

r̃m,i = f(γ̃m,i) + ε, with ε ∼ N{0, σ2
ε }. (6)

The function f is unknown and has to be estimated via
regression in the following. To define the underlying GP, we
choose the squared exponential covariance function [22]

k(γ̃m,i, γ̃m,j) = σ2
r exp

(
− 1

2α2
(γ̃m,i − γ̃m,j)2

)
, (7)

where γ̃m,i, γ̃m,j denote averaged diffuseness values of the
training or localization phase. The range variance σ2

r , the noise
variance σ2

ε , and the length scale of the covariance function
α are user-defined parameters. We construct the correlation
matrix of the training points

K(γ̃m) = [k(γ̃m,i, γ̃m,j)]i,j with 1 ≤ i, j ≤ Ntrain (8)

and the correlation vector of the new estimate γ̂m obtained at
node m with the training data

k(γ̂m, γ̃m) = k(γ̃m, γ̂m)T = [k(γ̂m, γ̃m,i)]i (9)

with 1 ≤ i ≤ Ntrain from the correlation function (7). Now, we
want to estimate the range rm for a new value γ̂m calculated at
the current sensor node m. We model the range of the training
data and the range of a test estimate to be jointly normally
distributed[

r̃m
rm

]
∼ N

{
0,

[
K(γ̃m) + σ2

ε I k(γ̃m, γ̂m)
k(γ̂m, γ̃m) k(γ̂m, γ̂m)

]}
. (10)

This defines a GP, which is completely specified by its mean
function (here identical to zero) and its covariance function.
The predicted mean function can be computed as [22]

r̂m = k(γ̂m, γ̃m)
(
K(γ̃m) + σ2

ε I
)−1

r̃m (11)

and the predictive variance by [22]

V(r̂m) = k(γ̂m, γ̂m) . . .

· · · − k(γ̂m, γ̃m)
(
K(γ̃m) + σ2

ε I
)−1

k(γ̃m, γ̂m). (12)

Note that the correlation matrix K and the correlation vector
k can be easily updated if new training data are available by
appending new values of the covariance function. However, the
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Fig. 1. Example of a resulting predicted mean function r̂ (red); a hose
illustrating V(r) (gray) and black circles corresponding to the training
positions with the parameter settings described in the experimental part.

matrix inversion in (11) and (12) has to be calculated again.
To circumvent this, the predicted mean (11) and variance (12)
can be updated by online learning [23], [24], which is out of
scope here. An exemplary regression curve is shown in Fig. 1.
Note that only a small number of labeled training data points
is needed for the algorithm to work, which, e.g., in a smart
home environment, can be easily collected.

III. LOCALIZATION

In the following section, the fusion of the obtained range
estimates (see Sec. II-B) is developed for 2D localization.
Note, that a similar procedure has been proposed by [10] for
a non-weighted Least Squares (LS) problem. We define the
position of the reference point pm corresponding to sensor
node m and the source position q as

pm = [px,m, py,m]T and q = [qx, qy]T. (13)

A. Weighted Least Squares Problem
The estimated range r̂m of node m can be described by

a circle around the node’s reference point defined by the
equation

r̂2m = r2m + vm = (qx − px,m)2 + (qy − py,m)2 + vm, (14)

with the true range rm and additional zero-mean IID Gaussian
measurement noise vm ∼ N{0, σ2

m}. The observation noise
variance is dependent on the predictive variance of the regres-
sion step σ2

m = g(V(r̂m), γ̂m), where g(·) is a user-defined
weighting function of V(r̂m) depending on γ̂m. For a compact
notation, we stack the estimated source–node distances r̂m in
the vector r̂ ∈ RM+ and introduce the following substitutions

r2m − r̂2m = R+ cx,mqx + cy,mqy − c0,m, (15)

where we defined

R = q2x + q2y, cx,m = −2px,m, cy,m = −2py,m, (16)

c0,m = r̂2m − p2x,m − p2y,m. (17)

If M nodes contribute to an estimate, (14) can be equivalently
represented in matrix notation by the likelihood as

p (r̂|θ(q)) =
1

(2π)M
√

det ΣM

· · · (18)

· · · exp

(
−1

2
(c0,M −CMθ)TΣ−1M (c0,M −CMθ)

)
.
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Fig. 2. Example for a localization result within the region of interest, marked
by the black box.

Here, the following notations have been applied

CM =

1 cx,1 cy,1
. . .

1 cx,M cy,M

 , c0,M =

 c0,1...
c0,M

 , θ =

Rqx
qy

 ,
and

ΣM = diag
{[
σ2
1 , . . . , σ

2
M

]}
.

This yields the maximum likelihood optimization problem

θ̂M = argmax
θ

p (r̂|θ(q)) . (19)

Its solution is the WLS estimate [25]

θ̂M = S[M ]CT
MΣ−1M c0,M , (20)

which yields an estimate of the source position q̂M =
[θ̂2,M , θ̂3,M ]T = [q̂x, q̂y]T as the non-redundant part of θ̂M .
Here we used the abbreviation S[M ] =

(
CT
MΣ−1M CM

)−1
.

An exemplary localization result is shown in Fig. 2.

B. Sequential Least Squares

In ASNs, the computational power of the sensor nodes is
usually low and data rates for communication are limited.
Therefore, we use a sequential realization of the WLS esti-
mator to distribute the computational load over the network.
The sequential WLS estimator has a lower computational
complexity than the corresponding batch estimate, because
no matrix inversion is necessary [25]. At the same time, the
amount of data which has to be transmitted over the network
is very low.

Initial values for S[m−1] and θ̂[m−1] have to be specified
to start the sequential node updating. This is done by collecting
a total of m′ estimates and conduct a batch estimation step (20)
using the m′ estimates. The initial estimator covariance S[m′]
is given by

S[m− 1] = S[m′] =
(
CT
m′Σ−1m′ Cm′

)−1
(21)

and the initial estimate θ̂[m′] by

θ̂[m− 1] = θ̂[m′] = S[m′]CT
m′Σ−1m′ c0,m′ . (22)
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The vector containing the position of node m is denoted as

c[m] = [1, cx,m, cy,m]T. (23)

Node m obtains the covariance matrix estimate S[m− 1] and
the estimated parameter vector θ̂[m − 1] of the LS estimator
from the previous node m− 1. The gain factor [25]

G[m] =
S[m− 1]c[m]

σ2
m + cT[m]S[m− 1]c[m]

(24)

is needed for the update of the WLS estimate [25]

θ̂[m] = θ̂[m− 1] + G[m]
(
c0,m − c[m]Tθ̂[m− 1]

)
(25)

and for the update of the estimator covariance [25]

S[m] =
(
I−G[m]cT[m]

)
S[m− 1]. (26)

The source position estimate q̂m =
[
θ̂2[m], θ̂3[m]

]T
at node

m is finally obtained from the non-redundant part of θ̂[m].
The data which have to be transmitted in the localization

phase to a successive node are 2m real numbers (m radii
and m variances, as Σm is diagonal) if m < m′ and 8 real
numbers for m ≥ m′ (the first element of θ̂ ∈ R3 is redundant
and S ∈ R3×3 is symmetric). The localization after completing
the training phase is summarized in Algorithm 1.

IV. SIMULATION STUDY

A. Scenario

We investigated the performance of the algorithm within
an enclosure simulated by the image-source method [26]
using the RIR generator [27]. The simulated enclosure was
of dimensions 10 m × 8 m × 10 m, from which we chose
a 2D 3 m × 3.5 m region of interest in the x-y-plane (see
Fig. 2) with all sources and microphones being placed at a
height of z = 2 m. A total of M = 6 nodes, each containing
a microphone pair with spacing dmic = 0.2 m have been
randomly distributed over the region of interest. The reference
point of a sensor node is the center of the microphone pair of
the node. For each test position, a speech signal of duration
5 s was convolved with the simulated RIRs and transformed
into the STFT domain at each node, by using a von Hann
window of length 25 ms and frame shift of 10 ms. Using
the frequency interval [fmin, fmax] = [125 Hz, 3500 Hz], the
averaged diffuseness γ̂ was computed for each node, with
a strong smoothing (λ = 0.95) to alleviate the influence of
speech pauses. These parameters hold for the training as well
as for the localization phase of the algorithm. We chose the
following parameters for the regression described by (7) and
(10), α = 0.1, σ2

r = 1.5, and σ2
ε = 0.01.

For large values of γ̂, the slope of the regression function
(11) becomes very steep (see Fig. 1) yielding range estimates,
which are very sensitive to small variations of γ̂. We account
for that by penalizing these estimates with a small weight,
corresponding to a high variance. This is represented by

σ2
m = g(V(r̂m), γ̂m) =

{
V(r̂m), if γ̂m ≤ 0.65
10, else . (27)

The initialization (21) and (22) of the sequential LS estima-
tor was done by the data collected from m′ = 3 sensor nodes.

Algorithm 1 Localization for node m
Input: K(γ̃), k(γ̂m, γ̃)

Compute range estimate r̂m (11) and variance σ2
m (12), (27)

if m < m′ then
Send range estimate [r̂1, . . . , r̂m]T and Σm to next node

else if m = m′ then
Initialize with (21) and (22)
Send estimates S[m′], θ̂[m′] to next node

else
Receive S[m− 1] and θ̂[m− 1]
Update weighted LS estimate (24), (25) and (26)
Send estimates S[m], θ̂[m] to next node

end if
Output: q̂m, if m ≥ m′

B. Results

We drew Nruns = 10 times Ntrain random positions for the
training of the algorithm and evaluated the trained algorithm at
each run with Neval = 100 test positions. The localization error
was evaluated by computing the Euclidean distance between
the estimated and the true source position for each run and
evaluation position, with the average being computed as

e =
1

NrunsNeval

Nruns∑
i=1

Neval∑
j=1

‖q̂i,j − qi,j‖2. (28)

We repeated the experiment with Ntrain = 10 training positions
for different reverberation times T60 = 0.3 s, 0.5 s, 0.7 s, 1 s.
The results are depicted in Fig. 3 as a function of the
number m of nodes used for the sequential update of the
WLS estimator. Note that the sequential estimator is not an
approximation of the batch version but an exact reformulation
of it. Therefore, the results of the sequential update, as
illustrated in the figure, are the same as for a batch algorithm
based on the same number of nodes. By inspection of the
resulting averaged localization errors e, we can conclude that
the proposed algorithm works accurately for a wide range
of reverberant environments. Furthermore, we investigated the
effect of the number of training data points. To this end, we
conducted experiments as described above, with T60 = 0.5 s
and Ntrain = 1, 2, 5, 10, 20. The results depicted in Fig. 4
get better for increasing Ntrain. However, this effect gets
smaller and more or less vanishes at Ntrain = 10. Finally we
investigated the influence of additive noise on the localization
performance. To this end, we carried out experiments with an
SNR at the microphones varying between −30 dB and 30 dB
with Ntrain = 10 and T60 = 0.5 s. The results using all six
nodes are depicted in Fig. 5. It can be seen that the algorithm
performs well for a broad range of SNR values and that the
performance starts to degrade significantly at an SNR of about
−10 dB.
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Fig. 3. Localization error e of the sequential LS
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Fig. 5. Localization error e of the final sequential
LS estimate for varying SNR.

V. CONCLUSIONS

We proposed a localization method for ASNs, which works
in a wide range of acoustic scenarios including very reverber-
ant and noisy ones. The algorithm performs well with only
a small number of training data points and is of low com-
putational complexity. The data rate for the communication
between the nodes is very low, which allows for a distributed
implementation. The efficacy of the approach has been shown
in an enclosure simulated by the image-source method. Future
work will include experiments with signals measured in a real
acoustic environment, distributed training and the investigation
of scenarios with multiple sources.
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