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Abstract—The paper presents a first attempt to correct the
time-frequency reassignment of a multicomponent signal having
non separable individual components. In particular, the case of a
2-components signal has been investigated in depth. It has been
proved that the integral (along frequencies) of the spectrogram
is still a multicomponent signal with specific instantaneous
frequencies. As a result, the spectrogram of this signal allows us to
disentangle the frequencies and recover the missing information
in the non separability region. Preliminary results show that the
proposed method is able to correctly reassign the information
in the interference region by separating the two individual
components, with a very moderate computational effort.

Index Terms—Time-frequency reassignment, multicomponent
signals, instantaneous frequency, spectrogram

I. INTRODUCTION

The representation and analysis of non stationary signals

is a very interesting and challenging research topic; at the

same time, it is fundamental in applications involving chirp-

like signals, i.e. frequency modulated signals as radar, audio

and speech signals and more recently, gravitational waves.

Linear and quadratic time-frequency analysis [1], [7], [11],

[12], [14], [16] offers a valid response to that problem. Its aim

is to reveal the frequency content of a signal as well as the law

regulating its variation with respect to time. More precisely, a

multicomponent frequency modulated signal is defined as [12]

f(t) =

N∑
k=1

fk(t) =

N∑
k=1

ak(t)e
iφk(t), (1)

where fk is the k−th mode and ak and φk respectively are its

amplitude and phase functions of the time variable t; hence,

the desired aim is to have a transform which allows for a

straightforward estimation of the instantaneous frequency of

each mode composing the signal, where the instantaneous

frequency is defined as the positive value of the phase deriva-

tive [4], [5]. Unfortunately, time-frequency transforms are

not always able to provide a compact and not ambiguous

representation of signal time-frequency features. Among the

methods proposed to enhance the readability of time-frequency

representations, reassignment method is probably the most

powerful [2]. Since time-frequency transforms are mainly win-

dowed transforms, it consists of assigning the energy of each

point in the time-frequency plane to the energy center of mass

within a domain having the amplitude of the analysis window.

To this aim, information from the phase spectrum is employed.

In the case of Short Time Fourier Transform (STFT), this has

the effect of significantly sharpening spectrogram appearance.

Moreover, it is computationally efficient since the use of phase

information corresponds to a combination of STFTs with

suitable analysis windows. Similar properties can be found

in the synchrosqueezing transform [6], [13]. The latter can be

considered a special case of reassignment method but it also

allows for signal reconstruction. Time-frequency reassignment

can also be view as the estimation of the instantaneous fre-

quency and group delay for each point on the time-frequency

plane. That is why, most of instantaneous frequency estimation

methods can be seen as particular cases or modifications of

the basic reassignment method [9], [10], [15].

Unfortunately, one of the main constraints in a

reassignment-like method is the separability condition

on the individual signal components [3]. The time-frequency

points are correctly reassigned to their corresponding mode if

the following condition is satisfied [2], [3]

|φ′
k(t)− φ′

j(t)| ≥ Δω, j, k ∈ [1, N ], k �= j

where Δω is the frequency bandwidth of the analysis window.

It is worth observing that such condition can be made true with

a suitable choice of the analysis window whenever

Δφ′
k,j(t) = φ′

k(t)− φ′
j(t) > 0, ∀ t, (2)

or viceversa. If this property is not met, it is not possible

to achieve the desired multicomponents decomposition. Two

examples of spectrograms of non separable and separable

components are respectively shown in Fig.1. a and b.

The aim of this paper is to contribute to overcome this limit

in the reassignment method. With regard to a two components

signal, the integral along frequency axis of its spectrogram,

referred as E(u), has been investigated (Fig. 1.c). As detailed

in the next section, it is a function of the time variable and can

be modeled as a multicomponent signal whose instantaneous

frequency is Δφ′
1,2(t), as defined in Eq. (2). In addition, it

provides information concerning the non separability regions

(interference between two modes in the time-frequency plane)

because its amplitude is concentrated in the region where the

frequencies of the individual components are the closest. As a
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a) b)

c) d)

e) f)

Fig. 1. Two components FM signals and their spectrogram: (a) non separable
components; (b) separable components; (c) Plot of E(u), as in Proposition 1,
of the spectrogram in (a); (d) Spectrogram of E(u); (e) Section at frequency
equal to 0 of the real part of the STFT of E(u); (f) Plot of the ratio as in
Eq. (17) restricted to the detected interference region.

consequence, the spectrogram of this energy signal (Fig. 1.d)

can be used for estimating Δφ′
1,2(t) in the interference re-

gion. Preliminary experimental results show that the proposed

method is able to resolve the individual signal components

in the interference region with greater precision than classical

methods, requiring a very moderate computational effort. The

remainder of the paper is the following. Next section presents

the proposed model and details concerning the proposed

reassignment procedure in interference regions. Section III

shows some experimental results along with some concluding

remarks.

II. THE PROPOSED MODEL

Spectrogram reassignment is a sort of post-processing

method whose aim is to improve its readability. In particular,

it is useful for separating and distinguishing the individual

Fig. 2. (Top) Reassignment of the spectrogram in Fig. 1.a); (Bottom) Corrected
spectrogram via the proposed approach.

modes of a multicomponent signal and for making the spectro-

gram less blurred around the single instantaneous frequencies.

Let us denote with PSf(u, ξ) = |Sf(u, ξ)|2 the spectrogram

of the signal f(t) = a(t) cosφ(t), where Sf(u, ξ) stands

for the short-time Fourier transform (STFT) computed with

a simmetric and real window g(t), with
∫ +∞
−∞ g(t)dt = 1, i.e.

Sf(u, ξ) =

+∞∫
−∞

f(t)g(t− u)e−iξt dt . (3)

The reassigned spectrogram [8] is defined as

P̂S(u, ξ) =∫
R2

PSf(u
′, ξ′)δ(u′ − ûf (u

′, ξ′), ξ′ − ξ̂f (u
′, ξ′))

du′dξ′

2π
. (4)
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ûf and ξ̂f define the local centroids of the Wigner Ville

distribution of f and they can be efficiently computed as

ûf (u, ξ) = u+ �
(
Sf tg(u, ξ)

Sfg(u, ξ)

)
(5)

ξ̂f (u, ξ) = ξ −�
(
Sfg′

(u, ξ)

Sfg(u, ξ)

)
(6)

where Sf∗ denotes the STFT computed using ∗ as analysis

function [8] and �(z), �(z) respectively stand for the real

and imaginay part of the complex number z. The computation

of the reassigned spectrogram consists of assigning the total

mass to the center of the distribution within the domain.

An example is shown in Fig. 2.top. Unfortunately, if the

individual components of the analysed signal are such that

their instantaneous frequency curves intersect, reassignment

fails in correspondence to the interference. In the next section

we will prove that it is possible to recover the lost information

in the interference region. The following model for the STFT

of a signal f(t) = a(t) cosφ(t) has been adopted [12].

Sf(u, ξ) =
1

2
a(u)ei(φ(u)−ξu)(ĝ(ξ − φ′(u)) + ε(u, ξ)) (7)

with ξ � 0. ε(u, ξ) is a corrective term which is negligible if

a(t) and φ′(t) have small relative variations over the support of

the window g and if φ′(u) ≥ Δω, where Δω is the bandwidth

of ĝ. In the sequel, ε(u, ξ) will be considered negligible.

A. The model

Let f(t) =
∑

k akcosφk(t) be a multicomponent signal

with constant amplitudes; then, the following Proposition

holds.

Proposition 1 The integral E(u) =
∫∞
−∞ PSf(u, ξ)dξ of

the spectrogram PSf(u, ξ) computed w.r.t. frequency direction

is such that

E(u) = c+
∑
k �=j

Ak,j(u) cos θk,j(u) (8)

with Ak,j(u)=
akaj

2

+∞∫
−∞

ĝ(ξ − φ′
k)ĝ(ξ − φ′

j)dξ and θk,j(u) =

φk(u)− φj(u), c =
π
2

∑
k a

2
k

+∞∫
−∞

g(t)2dt.

The Proof is in Appendix.

Prop. 1 proves that the energy of the spectrogram computed

over the frequency domain is a multicomponent signal with

respect to the time variable, having non constant amplitude —

see Fig. 1.c. The instantaneous frequencies of the individual

modes of this new signal are the difference between couples of

instantaneous frequency of the modes in the original signal.

In addition, the amplitudes depend on these differences and

they vanish as these differences increase. In other words,

the energy of these modes is mostly concentrated in the

interference regions we are interested in. In order to estimate

Δφ′
k,j(u) = φ′

k(u) − φ′
j(u), we will exploit the spectrogram

of E(u), shown in Fig. 1.d.

B. Δφ′ estimate
The following procedure can be used to estimate

|Δφ′
k,j(u)| = |φ′

k(u) − φ′
j(u)|, under the hypothesis of sepa-

rated interference regions w.r.t. ξ. Without loss of generality,

let us consider an FM signal having two components, f1 and

f2, with constant amplitude a = 1, i.e.

f(t) = cosφ1(t) + cosφ2(t). (9)

Proposition 2 Let Sf(u, ξ) be the STFT of f(t) as defined

in Eq. (9), computed by a Gaussian window g with variance

equal to σ2 and
∫ +∞
−∞ g(t)dt = 1. Set fint(u) = E(u) − c

according to Eq. (8) and let Sfint(u, ξ) be the corresponding

STFT computed using the same window g. If Δφ′(u) =
φ′
2(u)− φ′

1(u), then

|Δφ′(u)| = 2

σ2

√
− ln

(
2√
2πσ2

�(Sf(u, ξ))
fint(u)

)
. (10)

Proof is in Appendix.

C. Reassignment in the interference region
In case of multiple frequencies which are not sufficiently

apart, we can’t correctly estimate the local centroids in Eqs.(5)

and (6) at interference regions. The estimate in Eq. (10) can

be used in order to partially reconstruct the center of mass,

in interference regions, and then to improve the resolution of

the reassigned spectrogram as follows. Let us denote by G
the center of mass of the reassigned distribution, along the

frequency direction, i.e.

G(u) =
1

E(u)

+∞∫
−∞

ξ · P̂Sf(u, ξ)dξ. (11)

Since the ridge curves are the center of mass of the reassigned

spectrogram, it can be also written as G(u) =
φ′
1(u)+φ′

2(u)
2 .

Then, it is possible to determine the points of ridge curves in

the interference region simply computing the quantities

ξ̄(u) = G(u)± |Δφ′(u)|
2

. (12)

D. Algorithm
Summing up, the proposed method consists of the following

steps. Let f be a two-component signal as in Eq. (9).

1) Compute the spectrogram PSf(u, ξ) of f using a Gaus-

sian function g as analysis window (Fig. 1.a).

2) Estimate the integral of PSf(u, ξ) w.r.t. the frequency

axis as the sum along frequencies and denote it by E(u)
(Fig. 1.c).

3) Set fint(u) = E(u)− c, according to Proposition 1.

4) Compute the STFT of fint(u) (Figs. 1.d, 1.e).

5) Compute the ratio in Eq. (17) (see Fig. 1.f) and estimate

the frequencies Δφ′(u) as in Eq. (10).

6) Estimate the compact interference region Ω̄ by retaining

those points such that the energy E(u) over-exceeds the

10% of its maximum value.

7) Compute the quantity in Eq. (11) and reassign the

estimated frequencies as in Eq. (12) ∀ u ∈ Ω̄.
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Fig. 3. (Top) Reassignment of the spectrogram of a signal whose modes
respectively are a constant FM signal and a quadratic FM signal; (Bottom)
Corrected spectrogram via the proposed approach.

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed method has been tested on several mul-

ticomponent FM-signals. In the following, for the sake of

brevity, we will present two representative results. In the

presented test, one multicomponent signal has been consid-

ered: it consists of a sum of two linear FM components, i.e.

f(t) = cos(π/3nt2) + sin(π/4n(1 − t)2), where n is the

signal length and t ∈ [0, 1]. Starting from the result of the

reassignment method, the proposed model gives the result in

Fig. 2.bottom. As it can be observed, we are able to deal

with the interference region independently of the external

regions. We further stress that the proposed model is just

a preliminary attempt to resolve modes in the interference

region; that is why reassignment has been corrected just in the

central part of the interference region. In fact, the cross region

between non interference/interference causes some numerical

instability in the proposed solution — this is currently under

study. Despite this drawback, the strength of the proposed

approach is proved by the ability in correctly drawing the two

individual modes even in the most critical region: complete

interference. To further highlight this point, Fig. 3 depicts the

result obtained for a two components signal whose modes are a

constant FM signal and a quadratic one. As it can be observed,

time-frequency points have been correctly reassigned in the

interference region of the two signal modes.

Future research will focus on dealing with more than two

components making the whole framework more robust to more

complicated, and then closer to real study cases. It is straight-

forward that such a generalization will involve both theoretical

and practical aspects that have not yet been considered so far,

making existing tools more and more effective.

APPENDIX

Proof of Proposition 1 By linearity of the STFT and some

algebra, it follows that

|Sf(u, ξ)|2 =
∑
k

|Sfk(u, ξ)|2

+2
∑
k �=j

cos θk,j(u, ξ)|Sfk(u, ξ)| · |Sfj(u, ξ)| (13)

where θi,j is the angle between Sfk(u, ξ) and Sfj(u, ξ). By

Eq. (7):

|Sfk(u, ξ)| = ak
2
ĝ(ξ − φ′

k(u)) . (14)

Moreover, it follows that θk,j(u) = φk(u) − φj(u), i.e. it is

independent of ξ. By substituting in Eq. (13) and by summing

over ξ we obtain

+∞∫
−∞

|Sf(u, ξ)|2dξ =
∑
k

a2k
4

+∞∫
−∞

ĝ(ξ − φ′
k(u))

2dξ

+
akaj
2

cos θi,j(u)
∑
k �=j

+∞∫
−∞

ĝ(ξ − φ′
k(u))ĝ(ξ − φ′

j(u))dξ .

(15)

By Plancharel formula,
+∞∫
−∞

ĝ(ξ−φ′
k(u))

2dξ = 2π
+∞∫
−∞

g(t)2dt.

Hence, Eq. (8) follows by defining c = π
2

∑
k a

2
k

+∞∫
−∞

g(t)2dt

and Ak,j(u)=
akaj

2

+∞∫
−∞

ĝ(ξ − φ′
k)ĝ(ξ − φ′

j)dξ.

Proof of Proposition 2 From Eq. (7) we get

�(Sfint(u, ξ)) = 1

2
A(u)ĝ(ξ − |Δφ′(u)|) cos(Δφ(u)) . (16)

For all u belonging to the support of fint, we consider the

ratio
�(Sf(u, ξ))

fint(u)
=

1

2
ĝ(ξ − |Δφ′(u)|) . (17)

Since ĝ(ξ) =
√
2πσ2 exp(− 1

2σ
2ξ2), by evaluating Eq. (17) at

ξ = 0, it follows

exp(−1

2
σ2Δφ′2) =

2√
2πσ2

�(Sf(u, ξ))
fint(u)

(18)

then, for all u such that the quantity on the right is less than

1, we get the proof.
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