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Abstract—In this paper we present a novel method for dark
matter mass mapping reconstruction from weak gravitational
lensing measurements. The crux of the proposed method lies in
a new modelling of the matter density field in the Universe as a
mixture of two components: a) a sparsity-based component that
captures the non-Gaussian structure of the field, such as peaks
or halos at different spatial scales; and b) a Gaussian random
field, which is known to well represent the linear component
of the field. This new model represents the distribution of
matter in the universe much better than previously proposed
models. We have developed a new algorithm that also takes into
account the experimental problems we meet in practice, such as
a non-diagonal covariance matrix of the noise or missing data.
Experimental results on simulated data show that the proposed
method exhibits improved estimation accuracy compared to state-
of-the-art methods.

I. INTRODUCTION

Images of distant galaxies are distorted by the gravitational
potential of intervening massive structures along the line of
sight. This effect is known as gravitational lensing, in analogy
with the bending of light by optical lenses. Provided the
right geometrical conditions, changes in the apparent shapes
of galaxies due to lensing can sometimes be dramatic. For
example, elongated arcs and multiple images are possible
and belong to the strong lensing regime. The vast majority
of galaxies we observe, however, experience only tiny shape
distortions such that the signal is not detectable on an individ-
val galaxy. This regime of small shape distortions is known
accordingly as weak gravitational lensing. It is a relatively
recent development in astrophysics and cosmology to exploit
the statistical properties of galaxy shape measurements in
order to reconstruct mass maps — maps of density fluctuations
in the Universe. This is possible due to the imprint that cosmic
structures leave in the coherent alignment of background
galaxy shapes. Weak lensing is thus a powerful tool to probe
the mass distribution of various structural components of the
universe, including non-visible dark matter.

In signal processing terms, mass map reconstruction from
weak lensing measurements can be viewed as an ill-posed
inverse problem that usually involves two terms, the shear and
the convergence. Shear quantifies the distortion of the shapes
of background galaxies and is acquired through measurements
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available in galaxy surveys. Convergence is a dimensionless
surface mass density (the projection of the 3D mass distri-
bution on the 2D sky) that is related to the shear via some
lensing potential and that we wish to estimate.

A widely used algorithm to perform mass mapping is
the Kaiser-Squires method [1]. It is actually a simple least
square estimator that can be carried out by an inversion
formula in Fourier space, but it exhibits poor results since
it takes no account of noise and missing data. A different
approach, motivated also by the Bayesian framework, is that
of Wiener filtering, [2]. In this approach a Gaussian random
field structure is assumed as a prior for the convergence map,
which is responsible for inserting some bias that prevents our
solution from over-fitting, [3]. Moreover, a recently proposed
state-of-the-art method is the Gravitational Lensing Inversion
and MaPping using Sparse Estimators (GLIMPSE) algorithm,
[4]. GLIMPSE is a highly sophisticated algorithm that takes
advantage of the sparse regularization framework to solve
the ill-posed linear inverse problem. GLIMPSE is based on
sparse representations (i.e. wavelets), and is therefore well
designed to recover piece-wise smooth features. It outperforms
significantly other methods for peaks recovery. An analytical
comparison between these three estimators is provided in [5].

In this paper we propose to bridge the gap between the
sparse regularization method of GLIMPSE and the Wiener
filtering method by modelling the matter density field in
the universe using both linear and non-linear characteristics.
Specifically, we assume that the density field is now modelled
as a mixture of two terms, a) a non-Gaussian term that adopts
a sparse representation in a selected wavelet basis, [6], and
b) a Gaussian term that is modelled using a Gaussian random
field. The non-Gaussian signal component is able to capture
the non-linear characteristics of the field, such as peaks,
while the Gaussian component of the signal is responsible of
capturing the lower-frequency characteristics of the underlying
field, such as smooth variations. Under this assumption, we
formulate a two-step optimization process. First, we utilize the
GLIMPSE algorithm to estimate the non-Gaussian component
of the density, whereas, in the second, we employ a Wiener
filtering approach on the shear residuals in order to estimate
the Gaussian signal component. It should be noted that for
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implementing Wiener filtering we employ a proximal calculus
method recently presented in [7]. Experimental results on
simulated data provide evidence that the proposed method im-
proves the estimation performance of the GLIMPSE algorithm
in mass mapping recovery.

II. STATE OF THE ART

Let us consider a set of noisy weak lensing shear measure-
ments, denoted by the vector y € CM in the following, where
M is the number of galaxies in our survey. We assume that
y is generated as a linear combination of the known M x N
matrix H and the unknown underlying field x € RY, ie.,

y = Hx +n, 6]

where the additive noise n is assumed to be zero-mean Gaus-
sian, n ~ A/(0,X,,). The matrix H represents a set of known
linear operations that are responsible for the transformation
from convergence to shear in the weak lensing limit. Typically
H can be decomposed as H = FP ¥ H where ¥ denotes the
Fourier transform, F is its adjoint, and P is the diagonal
operator that defines the convergence field-shear connection
in Fourier space, i.e.,
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where k? = k? + k2 and k; and k, are frequency components
of x = Fx. The objective of this paper is to solve the inverse
problem of estimating the convergence field x after observing
the noisy shear measurements y.

Recently published state-of-the-art methods address this
problem by considering either a Wiener filtering approach
that utilizes a Gaussian-type prior over X, e.g., [3], [5], or
by exploiting a sparse representation of the convergence field
in the wavelet domain, e.g., [4]. Unfortunately, both these
approaches may not be sufficient to actually model the real
data. Specifically, the Gaussian prior considered in the Wiener
filtering approach can only capture the latent low-frequency
part of the signal and has a typical smoothing effect on the
recovered field. On the other hand, the sparsity-enforcing ¢,
norm regularization approach of [4] may as well capture the
high-frequency components of the data, such as peaks, but it
is unable to model the smoothly varying signal components.
In the following section, we show how our two mixtures
modelling leads to get the best of these two approaches.

III. MODELLING WITH SPARSITY AND A GAUSSIAN
RANDOM FIELD

To address the limitations above, a novel modelling ap-
proach is proposed here, where the convergence x is assumed
to comprise two parts, a Gaussian and a non-Gaussian, i.e.,

X = XNG + XG- 3)

The non-Gaussian part of the signal xn¢ is subject to a sparse
decomposition in a wavelet dictionary, while the component
Xg is assumed to be inherently non-sparse and Gaussian.
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Under this assumption, we may recast the data model in (1)
as

y = Hxng + 1/, €]

where n’ = Hxg +n. Note that (4) expresses a sparse recov-
ery problem under the presence of correlated noise. To tackle
this problem, we develop a sequential optimization scheme,
where both GLIMPSE and Wiener filtering are utilized in
order to estimate the convergence components Xn¢ and Xg,
respectively.

A. Proposed optimization

We solve the sparse recovery problem of (4) using a two-
step optimization procedure. In the first step, we utilize the
GLIMPSE algorithm to recover a non-Gaussian component of
the convergence. In the second, a Wiener filtering approach
is used to recover any residual Gaussian component. Hence,
adopting the GLIMPSE and Wiener cost functions, we can
express the proposed minimization tasks as,

1 .
§|| y — Hxye |5 + AMw © @ xncl1 + T+ (xnG)

min
XNG
Yr
(5
and
e A"

where X is the shear covariance matrix, A is the sparsity reg-
ularization parameter, w is a vector containing the weighting
coefficients of the ¢1-norm, ® denotes the Hadamard product,
® is the wavelet basis, Zy+ (+) is the indicator function defined
as T+ (x) = 0(00) if x € R (x ¢ RT), X, is the covariance
matrix of the additive noise n. and €2 is the matrix containing
the Wiener filter coefficients. Using GLIMPSE to solve (5),
we get an estimate X ¢ of the non-Gaussian component, that
allows us to compute the corresponding shear residuals vector
yr =y — HXy¢. In turn, this vector is binned in pixel space
in order to serve as input for the second optimization task in
(6). The Wiener filtering solution of (6) can then be expressed
as,

—1
%G = [HTE;V?H +x HTE 2y, ()

where X, denotes the covariance matrix of xg.

At this point, it is important to elaborate further on the
implementation of the Wiener filtering solution in (7). Note
first that the matrix X,, is diagonal in pixel space, while 3,
is diagonal in Fourier space. However, the matrix to be inverted
in expression (7) is clearly dense and of high dimension, i.e.
of the size of the number of pixels in the mass map. This
renders its inversion computationally complex and prone to
numerical errors. To circumvent this, we employ a proximal
calculus-based forward-backward splitting (FBS) technique for
the Wiener filtering step, similar to the one proposed in [7].
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To this end, we express the Wiener optimization function (6)
in an equivalent form as,

min { |y, - HxalZ, + Ixal}, }- ®)
Xa n

The advantage of the formulation in (8) is that it com-
prises separable terms, e.g. f1(xg) = ||y, — HXG||§:1/2 and
f2(xa) = [[x¢|3, - Following the FBS methodology, ‘e can
solve (8) by designing an iterative fixed point algorithm as

xg = prox, g, (xg = YV A(xE)), ©)
which is known to converge when v < Q/HHTET_LUZH 2
[8]. Computing the proximal operator in (9), we end up with
the following iterative Wiener filtering algorithm,

t =xk + TH'S /2 (yr — Hx’é)
k+1 H PXG
xg =% (Pt+ch> Ft
where t is an auxiliary variable with covariance matrix T =
diag(2 x min(Ei/ %)) and power spectrum Py. Notice that the
proposed algorithm is free from matrix inversions, since both
3, used in (10) and Py, = FE..F used in (11) are
diagonal.
Furthermore, in the following we propose two methods to
estimate the signal power spectrum Py, which is required in
(11). Let us first define the signal

r* = TH'S, /2 (y, — Hx§)

(10)

(1)

(12)

so that we can express (10) as t = x’é +1"*. We observe from
(12) that r* is whitened, i.e. its power spectrum is equal to
one. Hence, to get a noisy estimate of Py at each iteration
it suffices to calculate the power spectrum of t and subtract
one for the contribution of r*, i.e.,

Py, = [Py — 1]4. (13)

A second approach is to assume that the signal xs and the
noise n are uncorrelated and, hence, their power spectra are
associated as

Py = [Px = Pxyelt (14)

where Py, ., can be easily computed from the data, while P
can be known from cosmological models. In this paper we
utilized the approach in (14) to obtain a good approximation
of Py, .

IV. EXPERIMENTAL RESULTS

To test the quality of the proposed reconstruction method
we use realistic simulated data for which an underlying truth
is known. We use the public MICE (v1) simulated galaxy
catalogue, which is constructed from a lightcone N-body dark
matter simulation, [9]-[14]. The MICE catalogue provides the
calculated weak lensing (noise-free) observables: shear and
convergence. In a given patch of simulated sky we select
galaxies in the redshift (Redshift due to the expansion of the
Universe is used as a proxy for distance to a galaxy, as it is
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an observable that monotonically increases with distance from
an observer). z range [0.6, 1.4]. Each galaxy corresponds to a
noisy shear measurement, and we subsample with a density
of ~ 8000 galaxies per deg?.

Uncorrelated, complex shape noise values are randomly
drawn from a Gaussian distribution and added to the shear
value of each selected galaxy. This noise per galaxy is zero
mean and has variance 202 = 0.1636 (as estimated from
data [5]). The final pixelised noise (n) has variance that
depends on the number of galaxies per pixel.

Missing data is a common problem for galaxy surveys as
foreground objects obscuring the background galaxies have
to be “masked out”. In our simulated data, we mimic these
conditions by choosing to remove all galaxies in given regions.
Here there are no shear measurements available and the noise
variance is effectively infinite. Maps of the noisy input shear
data along with the noise variance are shown in Fig. 1 with
the mask applied. Panel (c) shows the true convergence map
of this field. Given the high level of noise, which is common
in real observations, correlations between the true convergence
and the shear field are not detectable by eye.

Figure 2c shows the results with our new method. It shows
that both the non-linear and the linear components can be
recovered, which has not been achieved by any method in the
past. For comparison, panels (a) and (b) show the results from
GLIMPSE, which recovers only the non-Gaussian features,
and the result from Wiener filtering, which recovers only the
Gaussian part of the signal.

V. CONCLUSION

A novel mass mapping algorithm has been presented that is
able to recover high resolution convergence maps from weak
gravitational lensing measurements. Our proposed process
involves a modelling with two components, a Gaussian one
and a non-Gaussian one, and we have developed an efficient
algorithm to derive the solution. We have shown that we can
also handle a non-diagonal covariance matrix and missing
data, so the method can be used in future experiments such
as the Euclid space mission. The experiments clearly show a
significant improvement compared to the state of art.
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(a) Noisy input shear map with mask

(b) Noise variance map with mask
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(c) True convergence map

Simulated weak lensing maps extracted from MICE data. Shown from left to right are (a) the masked shear with noise serving as input to the

reconstruction algorithms, (b) the masked noise variance map, and (c) the convergence map corresponding to the true shear for this field.
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(a) GLIMPSE convergence map
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(c) Proposed map

Fig. 2. Convergence maps reconstructed from the shear using three algorithms. The maps show (a) the GLIMPSE result, which recovers the non-Gaussian
part of the signal (cf. Fig. 1c), (b) the result from Wiener filtering, which recovers the Gaussian information, and (c) the result from our proposed method,
which recovers both parts simultaneously.
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