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Abstract—This paper deals with the problem of measuring
the system matrix of a linear system model with the help of
test signals and using the estimated matrix within an inverse
problem. In some cases, such as medical imaging, the process
of measuring the system matrix can be very time and memory
consuming. Fortunately, the underlying physical relationships
often have a sparse representation, and in such situations,
compressed-sensing techniques may be used to predict the system
matrix. However, since there may be systematic errors inside
the predicted matrix, its inversion can cause significant noise
amplification and large errors on the reconstructed quantities.
To combat this, regularization methods are often applied. In this
paper, based on the singular value decomposition, the minimum
mean square error estimator, and Stein’s unbiased risk estimate,
we show how optimal regularization parameters can be obtained
from a few number of measurements. The efficiency of our
approach is shown for two different systems.

Index Terms—Inverse systems, minimum mean square error,
compressed sensing, singular value decomposition, systematic
error

I. INTRODUCTION

The motivation of this work has its origin in the prob-
lem space of magnetic particle imaging. However, since the
developed method has more general use, we will present
and evaluate it in a more general way. Magnetic particle
imaging (MPI) is a tracer-based medical imaging method
that exploits the nonlinear magnetization characteristics of
superparamagnetic iron-oxide nanoparticles (SPIONs). It was
first published in [1]. In MPI, different magnetic fields are
used to change the magnetization of SPIONs inside an area
of interest. Through temporal periodic magnetization change
of the SPIONs by the motion of a field free point (FFP), i.e.,
the point without magnetization, a periodic voltage signal is
induced in a receive coil that mainly stems from the particles in
the vicinity of the FFP. Due to the lack of a closed-form system
function that explains the relationship between the periodic
voltage signal and the particle distribution, the system function
has to be measured. The measuring process is normally carried
out with the use of a robot that moves a point-like probe
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of SPIONs material inside the field of view (FOV) while
the corresponding voltage signal is recorded. The measured
system responses will then be included in a system matrix.
However, the measuring of a system matrix with reasonable
spatial resolution can be extremely time consuming, and direct
attempts have taken up to two days. Lampe et. al. [2] observed
that for MPI scanners that move the FFP along a Lissajous
trajectory, the system matrix can be represented with the
discrete cosine transform (DCT) in a sparse domain. Knopp et
al. [3] then proposed to use compressed sensing (CS) [4], [5] to
estimate the system matrix from a small number of calibration
scans. Since these first publications, several additional works
have been carried out that explore the compressibility of MPI
system matrices in order to predict them from only a few
calibration scans [6]–[9]. In general, because the system matrix
can be very large in size, and to speed-up the CS-based system
matrix reconstruction, the optimization is usually not done
globally on the whole matrix, but for individual rows instead.
The problem of finding a good estimator for the system matrix
is also related to learning a good dictionary representation for
the true but unknown system matrix [10].

This paper deals with the problem that a system matrix
that was estimated via CS may be corrupted by systematic
but unknown errors. Because the system matrix should still
be used to reconstruct the particle distribution (an image)
from the measured voltage signal, a good regularization is
needed. Using the singular valued decomposition (SVD) [11]
of the CS-based system matrix, minimum mean square error
(MMSE) estimation [12], and Stein’s unbiased risk estimate
(SURE) [13], [14], we develop an automatic matrix regular-
ization scheme that exploits the information contained in some
“noisy” ground truth measurements. It will be shown that with
the MMSE estimated parameters, the corrupted system matrix
can be regularized significantly for the image reconstruction
purpose.

II. LINEAR INVERSE SYSTEMS

An ideal linear inverse problem is given by

Aox = bo, (1)
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whereAo ∈ CM×N is called the system matrix, x ∈ CN is the
quantity to be reconstructed (in MPI x ∈ RN+ ), and bo ∈ CM
is the measured signal. If M > N , the linear system is called
overdetermined and accordingly underdetermined if M < N .
In this work, the measuring process of the system matrix
results in A = Ao + N and the measured signal becomes
b = bo + n where both N ∈ CM×N and n ∈ CM describe
noise. Overall the linear system becomes inconsistent:

Ax ≈ b. (2)

Thus, the problem is perturbed in both measured variables A
and b. IfN and n stem from Gaussian noise processes and the
system matrix A is well overdetermined, an optimal solution
in the least-squares sense is given by the total least squares
(TLS) approach [15]. However, in medical imaging it is more
common to solve the standard least squares problem with some
kind of regularization term R(x) to find the optimal x:

argmin
x

‖Ax− b‖22 + λR(x), λ > 0. (3)

On the one hand, the regularized least squares problem in (3)
has the intrinsic assumption that A is not perturbed, which is
wrong in our situation, on the other hand, the problem can still
be regularized in this form when there is a good prior available
on x. Additionally, the problem (3) is much simpler to be
solved than the corresponding TLS approaches. This leads to
the question of how it might be possible to perform processing
on A to reduce the systematical error in the reconstruction in
(3).

III. COMPRESSED SENSING SYSTEM-MATRIX ESTIMATION
FROM PARTIAL MEASUREMENTS

Using principle of compressed sensing [4], [5],A can be es-
timated from partial measurements AP from the real unknown
system matrix Ao by solving the optimization problem

argmin
Ã

∥∥∥AP − ÃTP∥∥∥2
Fro

+ λ

M∑
m=1

N∑
n=1

|ãmn|, (4)

where ‖ . ‖Fro denotes the Frobenius norm, T ∈ RN×N
denotes the sparsifying transform, and P ∈ RN×n describes
the partial sampling of the matrix columns from A. With the
help of the inverse transform, we get

A = ÃT . (5)

However, because A may become extremely large, a row-
wise solving of the problem (4) is often preferred. A strategy
could be to allow all rows to have a fixed number of maximally
K nonzero coefficients. This would help to make sure that all
rows contribute equally to the final estimate of A. The used
optimization strategy then takes on the form

argmin
ãk

‖aPk − PT
>ãk‖2 s.t. ‖ãk‖0 ≤ K, (6)

where aPk and ãk denote the k-th rows of AP and Ã, respec-
tively. To solve the problem (6), different matching pursuit
strategies can be used. In this work compressive sampling
matching pursuit (CoSaMP) is applied [16].

IV. MINIMUM MEAN SQUARE ERROR ESTIMATION

The linear minimum mean square error estimator B̂ [12] is
defined by

B̂ = argmin
B

E
[
‖x− x̂(b)‖22

]
, (7)

with x̂(b) = Bb being linear estimator and E[ · ] denoting
the expected value. If x is drawn from a Gaussian distribution
with standard deviation λ and zero mean, the optimal solution
to (7) reads

B̂ = (AHA+ λ2I)−1AH = AH(AAH + λ2I)−1, (8)

where A is given as in (2) and I denotes the identity matrix.
The matrix B̂ can be expressed in terms of the SVD of

A = UΣV H by

B̂ = V
(
ΣTΣ + λ2I

)−1
ΣT︸ ︷︷ ︸

D

UH = V DUH .
(9)

The matrix D is diagonal. This now leads to the idea of
optimizing D inside the MMSE framework (7).

Let D = {(b1,x1), (b2,x2) . . . , (bn,xn)} be the set of all
known observations, with the relationship bi = Aoxi + ni.
Further, let us replace the expected value E[ · ] by the
arithmetic mean. We get

E
[
‖x− x̂(b)‖22

]
≈ 1

n

n∑
i=1

‖xi −Bbi‖22

=
1

n

n∑
i=1

∥∥∥xi − V DUHbi

∥∥∥2
2
=

1

n

n∑
i=1

∥∥∥x̃i −Db̃i∥∥∥2
2
,

(10)

where x̃i = V Hxi and b̃i = UHbi. Now let us consider the
diagonal elements dkk of D to be the only free parameters
for the MMSE estimation. Then it follows

dopt
kk = argmin

dkk

1

n

n∑
i=1

∥∥∥x̃i −Db̃i∥∥∥2
2

=

∑n
i=1<{x̃i,k b̃i,k}∑n

i=1

∣∣∣b̃i,k∣∣∣2 .
(11)

This result for the diagonal elements of matrix D will be
called the dkk-solution in the following.

It can be observed that the minimum mean square error
estimate for D is the result of a correlation analysis between
b̃i and x̃i. Using the relationship dkk(λ) = σk

σ2
k+λ

2
k

, we may
define optimal values for individual λk as

λ2k =

{ (
1
dopt
kk

− σk
)
σk if 1

dopt
kk

> σk,

0 otherwise.
(12)

Replacing the term λ2I in (9) by diag(λ21, λ
2
2, . . .) will be

referred to as the λk-solution in the following.
The optimization of λ in (9) is even harder than for

individual λk, and numerical optimization methods have to be
used. This solution we call the optimal-λ estimate. However,
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if the matrix is large, the optimal λ can be approximated quite
well by the mean value

λ2 =
1

|K|
∑
k∈K

λ2k, (13)

where K = { k | λk > 0 }. The main point is that, if A is
a good estimation of the real system matrix, then we should
expect that 1

d∗kk
≈ σk, but if both values are very different, then

we cannot trust the particular σk, and regularization techniques
should be used.

V. STEIN’S UNBIASED RISK ESTIMATE

The MSE-term in (7) can also be expressed as:

E
[
‖x− x̂(b)‖22

]
= ‖x‖22 + E

[
‖x̂(b)‖22

]
− 2E

[
x̂T (b)x

]
.

(14)
In general, x is unknown for a given b and a direct minimizing
of (7) is impossible. Alternatively to the previous introduced
approaches, here shortly the generalized Stein unbiased risk
estimation (SURE) for exponential families should be intro-
duced [14] based on the work of Stein [13]. All exponential
family probability density functions can be expressed by

f(u,x) = q(u) exp(xTu− g(x)) (15)

with u = φ(b), where x denotes the unknown parameters and
b the data depending terms. Now let h(u) = x̂(b) denote our
estimation function and let h(u) be weakly differentiable in
u and bounded, then the expectation can be expressed as

E
[
hT (u)x

]
= −E

[
Tr

(
∂h(u)

∂u

)]
− E

[
hT (u)

∂ ln q(u)

∂u

]
,

(16)
and it follows that

−Tr

(
∂h(u)

∂u

)
− hT (u)∂ ln q(u)

∂u
(17)

is an unbiased estimate of E
[
hT (u)x

]
and independent of

the unknown x.
If further (14), (16), and (17) are combined, we get

S(h) = ‖x‖22+‖h(u)‖22+2Tr

(
∂h(u)

∂u

)
+2hT (u)

∂ ln q(u)

∂u
(18)

as an unbiased estimate of the MSE-risk. Following, the
derivations in [14] for a linear model of the form

Ax+ ε = b

with ε drawn from N (0,C) and u = ATC−1b, the risk
estimator (18) is given by

S(h) = ‖x‖22+‖h(u)‖22+2

(
Tr

(
∂h(u)

∂u

)
− hT (u)x̂ML

)
.

(19)
The term x̂ML denotes the maximum likelihood estimate,
which is given by

x̂ML(b) =
(
ATC−1A

)−1
ATC−1b. (20)

Minimizing (19) can be performed over the free parameter
of our estimate hλ(u):

λ∗ = argmin
λ

n∑
i=1

S(hλ(ui))

= argmin
λ

n∑
i=1

‖hλ(ui)− x̂ML(bi)‖22 + 2Tr

(
∂hλ(ui)

∂u

)
.

(21)
The second expression is derived by discarding ‖x‖22 and
adding ‖x̂ML(b)‖22, which is allowed, because both terms are
independent of λ. Let us assume that C = σ2I and hλ(u) =
σ2(ATA + λI)−1u = (ATA + λI)−1AT b = x̂λ(b), then
the optimization problem is given by

argmin
λ

(
n∑
i=1

‖x̂λ(b)− x̂ML(b)‖22

)
+2nσ2 Tr

(
(ATA+ λI)−1

)
.

(22)

Because in our situation both parameters (bi,xi) are observed
from a limited observation set, it seems that x̂ML(bi) is not as
good as the expected xi, so we replace the estimator in (22)
and get the following minimization problem:

argmin
λ

(
n∑
i=1

‖x̂λ(bi)− x̂i‖22

)
+2σ2nTr

(
(ATA+ λI)−1

) (23)

A. Notes on the risk minimization

The minimization of the arithmetic mean MSE in (14)
for a parameter vector λ is a good estimate, if, for given
observations in D and given matrix A, which for itself is
an estimate for A0, the degrees of freedom for estimating A
and λ are not too high. The arithmetic mean approximation
is also known as train risk minimization and over-fitting can
be avoided with help of cross validation or an independent
validation set.

The estimator (22) is an unbiased risk estimator for x̂ and
b̂, if Ax + ε = b holds, however, it is not necessary that A
is a good estimate for Ao. Also, the model does not include
the systematical error between A and Ao.

The estimator (23) is always biased for known bi and x̂i.
This is due to the fact that it is the corrected version of (22),
where the ML-estimator x̂ML(bi) is replaced by the better
ground truth estimator x̂i and can be seen as regularized
version of (14). The regularization term penalizes too small
values for λ, because for λ → ∞ the term vanishes and for
λ→ 0 it has its maximum.

In addition, it should be noted that A itself can be seen as
a part of the prediction from the set (xi, bi) and can also be
part of the risk minimization in the MSE term in (14).

It should be noted that we predict the system matrix and
validate the quality of its prediction based on the same set of
data. It is not surprising that, with an increasing number of K,
the predicted systematic error will become lower. This directly
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(a) Matrix A1 without warm start
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(b) Matrix A1 with warm start
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(c) Estimation error of A1

Fig. 1. The reconstruction results for the Shepp-Logan phantom for the predicted CS-based system matrix A1 in (a) and (b), and the estimation error on
A1 in (c). pinv: MATLAB pseudoinverse, dkk: calculation by (11), mean-λ: calculation by (13), λk: calculation by (12), optimal-λ: handcrafted “optimal”
value for λ by K = 14, Reg-Sure-λ: calculation by (23), MMSE-λ: calculation with help of (10).

corresponds to the overfitting problem in machine learning.
However, here the assumption is that only a few number of
measurements exists to predict the system matrix and all of
them should be used for this purpose.

VI. TEST SETUP

For the experiments, two system matricesA1 ∈ R3500×50·50

and A2 ∈ R16000×100·100 were created that had a sparse
representation of their rows via the DCT-II. ForA1, there were
up to 20 nonzero, randomly selected DCT-coefficients in each
row, and for A2, these were up to 30 nonzero coefficients.

To simulate the partial measurement process of the system
matrix, 8% of all 50 × 50 or 100 × 100 positions of the
FOV were sampled randomly. Then white Gaussian noise was
added, resulting for A1 in a signal-to-noise ratio of around
18 dB and for A2 in a signal-to-noise ratio of around 19 dB.
A Shepp-Logan phantom x of size 50 × 50 and 100 × 100
was created [17], and the imaging process with the completely
noise-free system matrices A1 and A2 was simulated. Finally,
noise was added to b1 and b2 with the same noise floor as in
the previous measurements for obtaining the system matrices,
which, due to the energy of the Shepp-Logan phantom, results
in a better signal-to-noise ratio of about 40 dB for b1 and 30
dB for b2.

For the reconstruction of the system matrices, a row-
wise reconstruction with the DCT-II as sparse domain with
K ∈ [1, 50] nonzero coefficients was used. Inside one full
reconstruction of a system matrix, the value K was fixed for
all rows. Method 1 predicted a system matrix independently
for each K. In Method 2, we increased K successively, starting
with K = 1 and using a warm start scenario where the old
prediction from iteration K − 1 was used as initialization for
the next iteration.

In each method, the pseudoinverse (pinv from MATLAB
2017b), the optimized dkk-solution by (11), the mean λ-
solution by (13), the λk-solution by (12), the Reg-Sure (23),
and the λ-MMSE calculation by (10) were calculated. For
the λk-solution, only λk corresponding to the current rank
estimation of the matrix were taken into account, like in the
pinv method. The Reg-Sure method gets the ground truth

measurement noise variance as fixed parameter. Finally, for
both matrices A1 and A2 two different λ were manually
selected as baseline.

To evaluate the image reconstruction error, the mean squared
error ‖xorg−xrec‖2

Number of Pixels is used, where xorg and xrec denote the
original Shepp-Logan phantom and the image reconstructed
from bi, respectively.

VII. RESULTS

In Fig. 1(a), the results for the reconstruction of the Shepp-
Logan phantom without warm start are shown. Here, the
pseudoinverse yields the worst reconstruction of the Shepp-
Logan phantom. For small K, the λk-estimation is worse than
the other estimations. However, near to the optimal value of
K = 14, the method is as good as the others. With K = 15
it can be observed that the optimal-λ solution is slightly
better than the mean-λ, dkk-solutions and the MMSE-λ. It
is interesting to note that the λk-solution is equivalent to the
dkk-solution, which is not that surprising due to the close
relationship in (12). The Reg-Sure-λ solution is for small K
slightly worse than the other estimator, but for larger values
in K it is a more stable estimator. In Fig. 1(b), the warm-
start scenario is shown. The results are mainly the same as
in Fig. 1(a), however, the error for K = 14 is higher than
for the situation without warm start. This is not surprising,
because starting with zeros around the optimal value of K is
more unbiased. Interestingly, the warm start helps in situations
where K is heavily overestimated, because the previously
found good solution has a chance to be retained. We also can
observe that the estimation error for A1 shown in Fig. 1(c) is
correlated to our estimation performance.

To show the stability of the prediction methods and that the
method is independent from the selected K and resolution,
also results for the second system matrix A2 are included. In
Figs. 2(a) and (b), the reconstruction results for the Shepp-
Logan phantom with and without warm start are shown,
respectively. Similar observations as in Figs. 1(a) and (b) can
be done. However, the optimal solution is now at K = 19,
and from this point on, Methods 1 and 2 perform differently.
The solutions, excluding the pseudoinverse and λkk-solution,
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(a) Matrix A2 without warm start
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(b) Matrix A2 with warm start
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(c) Estimation error of A2

Fig. 2. The reconstruction results for the Shepp-Logan phantom for the predicted CS-based system matrix A2 in (a) and (b), and the estimation error on
A2 in (c). pinv: MATLAB pseudoinverse, dkk: calculation by (11), mean-λ: calculation by (13), λk: calculation by (12), optimal-λ: handcrafted “optimal”
value for λ by K = 23, Reg-Sure-λ: calculation by (23), MMSE-λ: with help of (10).

show similar performance for small K until the optimal value
is reached, then Reg-Sure-λ solution outperforms the other
methods. In Fig. 2 (c) the estimation error for A2 is shown.
Again, it can be observed that the estimation error around the
optimal value is smaller without warm start.

Overall, our results show that it is possible to simultaneously
predict the system matrix by a compressed-sensing based
approach and to use the same measurements to find optimal
MMSE regularization parameters.

To avoid confusions: the optimal K here differs from the
number of the selected K by creating the system matrix. This
has its origin in the random creation of the system matrix,
where we chose randomly different K ∈ {1 ≤ α} with an
upper bound α. The way how we estimated the system matrix
should result in systematical errors so that we can test our
parameter selection.

VIII. CONCLUSIONS

In this work, with help of the SVD and SURE, six different
regularization techniques were derived from the linear MMSE
estimation. The developed methods were able to estimate the
system matrix from a few number of measurements and, in
addition, to use the same dataset to find optimal parameters
for the inverse imaging problem. Our tests validate our formal
calculations. As can be seen in Fig. 1 and Fig. 2 for the optimal
K, our automatically estimated regularization parameters λk,
dkk and mean-λ are as good as the optimal λ, which is chosen
manually to be the optimal parameter for the optimal K. Our
research is further directed to reduce the systematic errors
inside the matrix A and to optimize B directly inside the
sparse structure of the transformed matrix AT .
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