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Abstract—This work compares the performance of paramet-
ric mixed-effects models to a completely non-parametric (NP)
approach for modelling life-long evolution of competition per-
formance for athletes. The difficulty of the problem lies in the
strongly unbalanced characteristics of the functional dataset. The
prediction performance of the identified models is compared,
revealing the advantages and limitations of the two approaches.
As far as we know this is the first time NP modelling of
athletic performance is attempted, our study confirming its
appropriateness whenever sufficiently rich datasets are available.

Index Terms—Functional data, longitudinal population models,
mixed-effects models, Gaussian Processes, Hierarchical Bayesian
Gauss-Wishart models, athletic performance.

I. INTRODUCTION

Models of the temporal evolution of a given population
are interesting in many different situations. Population models
have traditionally resorted to parametric mixed-effects models
[7] which have a long record of successful application in
several domains, in particular in pharmacokinetic studies.
These models parametrise the possible evolutions in time of a
quantity of interest, distinct individuals of the population being
described by different values of the parameters. The choice of
the parametric family is usually dictated by existing knowl-
edge about the expected patterns of variation, and population
modelling amounts to estimation of the statistical distribution
of the model parameters. A more recent trend is to rely
on non-parametric models, which although computationally
demanding do not require specification of the possible patterns
of evolution, implicitly learning them from data. Our goal
is to compare the flexibility and predictive power of these
two approaches for modelling life-long athletic performance
trajectories, highlighting their advantages and limitations. Sig-
nificant efforts have recently been devoted to this problem,
with both scientific (e.g. [6]) and forensic (e.g. [1]) goals,
mostly using parametric models, and as far as we know this
is the first time that non-parametric modelling is attempted in
this domain.

II. PROBLEM FORMULATION

Let P be the population under study, and Zi = {Zi(t), t ∈
T}, i ∈ P , denote the (non-observable) evolution in T of the

characteristic of interest for individual i. Let Q ⊆ P be a rep-
resentative sample of P . Denote by Yi = {Yi(tik), tik ∈ Ti}
the vector of available observations for individual i ∈ Q ,
where Ti ⊂ T are the times at which (s)he has been observed.

We assume that observations Yi(t) are a random function
of the quantity of interest Zi(t), characterised by a parametric
family of conditional distributions, such that

Yi|Zi
∼ p(Yi|Zi, σi), σi ∈ R+ .

Denote by L = ∪i∈QYi the set of available observations for
model learning. Our goal to infer a probabilistic model for the
individuals in P: pL ≡ p(Zi, σi|L), i ∈ P .

In our application Zi(t) represents the fitness of athlete i at
age t, and Yi(tik) is the measured performance of athlete i in
a competition done at age tik.

Figure 1 allows the appreciation of the major difficulties
of the problem, on the example of men 400 meters running
(similar patterns are observed for other distances). The top
plot is the cloud of points of all available performances, the
middle plot shows the individuals age spans, and in the bottom
we plot the performances of three different athletes. We can
remark that: (i) the temporal support of each series (middle
plot) differs significantly across the population, with length
ranging from 2 to 20 years (median: 8 years); (ii) each indi-
vidual is non-uniformly sampled (bottom), with measurement
concentration dictated by the competitions calendar; (iii) the
variability of each athlete performances is strongly asymmetric
(bottom): while extremely bad performances (large running
times) can be due to injury or other accidental causes, ex-
ceptionally good performances have smaller departure from
median performance.

III. POPULATION MODELS

A. Parametric model

Mixed-effects models [7] are hierarchical models for mul-
tiple measurements on the same individuals. Inter- and intra-
individual variability are described by a family of parametric
distributions. One of their main advantages is that they do
not require a balanced dataset: the sets Ti, including their
cardinality ni, can vary from one individual to another as it is
the case in our application. For each individual, observations
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Fig. 1. 400 meters. Top: Learning (green) and testing (red) datasets for
prediction test (see Section V-B). Horizontal axis: age (decimal years); vertical
axis: performance time (in secs). Middle: Age span of athlete’s time series.
Red lines indicate the minimum and maximum ages of the dataset, blue
lines indicate the support of the fitted GP model, see section IV. Bottom:
measurements for three distinct athletes.

{Yi(tik)}ni
i=1 are modelled as noisy measurements of Zi(tik)

contaminated by additive noise

Yi(tik) = Zi(tik) + εik, Zi(t) = Z(t, α, βi) .

The right-hand equation shows that Z(t) is a parametric
function of t with parameters α ∈ Rp common to all the
population (the fixed effects), and βi ∈ Rq , specific to each
individual (the random effects). Choice of this parametric
representation is commonly guided by domain knowledge.

The fixed-effects α are unknown constants, and all other

variables are independent and Gaussian:

{εik}
iid∼ N (0, σ2), {βi}

iid∼ N (0,Σ) .

We focus on Linear Mixed Effects (LME) models where
mean and individual trends are expressed in terms of a finite
number of known basis functions, Zi(t) =

∑p
`=1G`(t)α` +∑q

`=1 F`(t)βi,` leading to the simple matrix form:

Yi = Xiα+ X̃iβi + εi ,

where Xi is the ni × p fixed-effects design matrix with
elements [Xi]k,` = G`(tik), X̃ is the ni × q random-
effects design matrix with elements [X̃i]k,` = F`(tik) and
εi = (εi1, . . . , εini

)t is the error vector. The functions G`(·)
can simultaneously model a mean population trend, as well as
the effect of exogenous covariates, e.g. the olympic cycle, in
the context of sport performances.

B. Non-parametric model

In this approach, the observations

Yi(tik) = Zi(tik) + εi(tik) ,

are noisy versions of the fitness trajectories {Zi(t), t ∈ T},
which are modelled as realisations of a Gaussian Process (GP)

{Zi(t), t ∈ T}
iid∼ GP (µ(·),Σ(·, ·)) ,

specified by a mean function µ(t), t ∈ T and a covari-
ance function Σ(t, u), t, u ∈ T . GPs are a complete char-
acterisation of the distribution of an ensemble of functions
{zω(·), t ∈ T}ω∈Ω defined over some index set T . For any
finite t = {ti}ni=1 ⊂ T the joint distribution of the random
variables zω(t) = {zω(ti), ti ∈ t} is Gaussian: zω(t) ∼
N (µ(t),Σ(t, t)), where [µ(t)]i = µ(ti) and [Σ(t, t))]ij =
Σ(ti, tj). The observation noises {εi(·)} are Gaussian, white,
mutually independent and zero-mean, with covariances σ2

εi .
In this study we use a minor modification of the hierarchical

Bayesian approach to the estimation of the GP moments
proposed in [3], which relies on prior distributions over µ(·)
and Σ(·, ·) as Gaussian and Inverse Wishart (IW) processes,
respectively. Traditional approaches to GP identification as-
sume parametric models for both µ(·) and Σ(·, ·), most often
a polynomial model for µ(·) and stationary parametric kernel
for Σ(·, ·). Stationarity is mandatory when a single realisation
of the process is observed but it is not required when a
series of realisations is available. The use of an Inverse
Wishart prior distribution [4], whose essential support is the
entire cone of symmetric positive definite matrices, allows
departure from the restrictive stationarity assumption and to
fully capture the internal correlation structure of the dataset.
More precisely, the following priors are assumed: µ(·)|µ0,Σ

∼
GP (µ0(·),Σ(·, ·)), where µ0(·) is an hyper-parameter to be
specified; Σ|ν,σ2

x,A(·,·) ∼ IW (ν, σ2
xA(·, ·)), where ν ≥ 4 and

σ2
xA(·, ·) are the scale and location parameters of the IW

distribution. Scale parameter ν is set to 4, corresponding to
the least informative prior, A(·, ·) is specified by the user, and
σ2
x follows an inverse Gamma distribution.
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As the variability of the observations varies significantly
from individual to individual we modified the original BABF
model to use distinct σ2

εi for each individual.

IV. MODEL IDENTIFICATION

A. Mixed-effects model
The parameters (Σ, σ2) of the LME model are estimated

by the restricted maximum likelihood method (REML). The
fixed-effects are obtained by the generalized least squares
formula using Σ̂ and σ̂2:

α̂ =

(
N∑
i=1

Xt
i ŴiXi

)−1 N∑
i=1

Xt
i ŴiYi ,

where N = |Q| is the number of observed individuals, and
Ŵi = (σ̂2Ini + X̃iΣ̂X̃

t
i )
−1 is the inverse of the estimated

covariance matrix of Yi. Individual parameters are predicted
by the empirical Bayes formula:

β̂i = Σ̂X̃t
i Ŵi(Yi −Xiα̂) .

The variance Var(Ẑi(τ)) of the prediction error for fitness
Zi(τ) at time τ takes into account the joint posterior distribu-
tion of the random- and fixed-effects, and is computed using
the formulae in [8]. When predicting performance over an
unobserved population this would lead to a slightly optimistic
error characterisation, ignoring the errors in the estimation of
the covariance Σ (see [9] for discussion). However, in the
framework of our study, where the estimated model is used to
predict future performances, these errors are best characterised
by the induced biases.

In the results presented in section VI q = p = 3, and
[Xi]k` = [X̃i]k` = t`−1

ik , ` = 1, . . . , 3 are polynomial design
matrices.

B. GP model
Conjugacy of the chosen priors allows inference of the GP

moments µ(·),Σ(·, ·) and of the intra-individual variabilities
{σ2

εi}
N
i=1 by using a Gibbs sampler, treating the noiseless

versions of the observations (Zi(tik)) as latent variables.
The distribution of Yi(tik) depends only on the values of

µ(tik) and Σ(tik, tik′) at which the time series has been
observed, and thus the distribution of the entire dataset de-
pends only on the values of the process moments in ∪Ni=1Ti.
Contrary to the LME model, the GP model is valid only
in the age interval spanned by the data. If we denote by
Ii = [min(Ti),max(Ti)], the GP model temporal support must
be T ⊂ ∪iIi.

BABF overcomes the large numerical complexity induced
by the variation of the sets Ti by assuming that Zi(·) belong
to the span of a number q � |

⋃
iTi| of fixed knots B-splines.

Although the impact of the prior hyper-parameters µ0(t)
and A(t, u), t, u ∈ S is low if the available dataset L is large,
faster convergence is obtained if they are carefully initialised
using L. A common choice for µ0 is the empirical mean of
the available series. Since the sets Ti are distinct, we set

µ0(t) =
1

Nt

∑
i∈Qt

Ỹi(t), t ∈ S , (1)

TABLE I
SIZE OF DATASETS

dataset all train test
event (m) N obs. N ind. N obs. N ind N obs. N ind

400 15474 308 14979 308 493 88
800 12201 226 11822 226 379 64

1500 11975 327 11627 327 348 72
5000 6741 345 6586 345 155 62
10000 1918 181 1872 181 46 33

where Nt = |Qt| and Qt ⊂ Q is the set of trajectories
for which t ∈ [minTi,maxTi], and Ỹi(t) is obtained by
interpolating {Yi(tik)}ni

k=1 at t. Matrix A(t, u), t, u ∈ S is set
to the empirical correlation, estimated in the same manner by
further imposing positive definiteness. The hyper-parameters
of the prior distribution for σ2

x and of the common prior
for {σ2

εi}
N
i=1are inferred from the available data, see [3] for

details.
GP modelling requires that Nt be sufficiently large over the

entire modelled interval. In our application we set S = [16, 35]
(indicated by the blue vertical lines in Figure 1), q = 10 and
S is a uniform 20-points grid spanning T .

V. DESIGN OF TESTS FOR PERFORMANCE ANALYSIS

A. Datasets

From the database AllAthletics.com of performances in
finals of official competitions on 5 outdoor running events
(400, 800, 1500, 5000 and 10000 meters) in the years 1997–
2017, we extracted the records of men athletes (i) who are
high-level, i.e., whose personal best is above entry standard for
the World Championships of 2007; (ii) have measurements at
least for three distinct years in the age interval [20, 35]. Table
I gives the number of observations (N obs) and the number of
athletes (N ind) in each dataset.

B. Prediction performance

We compare the in-sample prediction perfor-
mance of our models. Consider distance D ∈
{400, 800, 1500, 5000, 10000}, and let QD be the
corresponding dataset. Using the LME and the GP models
learned on all available measurements for years up to 2016,
we compute the one-step ahead prediction estimates for the
athletes’ fitness during year 2017. The top plot in Figure
1 shows the learning (green) and testing (red) datasets for
D = 400. Note the diversity of the athlete’s ages in the
predicted year (2017).

Predictive performance has been tested in the following
recursive manner. Denote by YT

i the set of measurements
for athlete i in year 2017, occurring at ages TT

i = {t1 ≤
t2 ≤ . . . ,≤ tri}. For each k = 1, . . . , ri we used all available
measurements TT

ik = Ti
L ∪ {t1, . . . , tk−1} for athlete i

previous to tk, to predict the fitness at age tik, ZMi (tk).
Figure 2 illustrates the results for one athlete for both LME

(top) and GP (bottom), for D = 400. The red stars ? indicate
the measures used to learn the model and the red circles ◦ the
test set, i.e. the performances being predicted. The blue stars
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Fig. 2. Learning (?) and testing (◦) datasets; estimated (?) and predicted
(?) fitness; confidence intervals for Yi(tik) (black vertical lines), D = 400
meters. Top: LME; bottom: GP.

? are the fitness estimates using the entire learning set. The
green stars ? are the predictions for 2017, using the identified
population model and the measures in TT

ik. The black vertical
lines are the 95% estimated confidence intervals according to
the estimated models.

Denote by δik = Yi(tk) − Ẑi(tk) the prediction residuals,
E[δ]M their empirical mean, and ∆M

ik their normalised ver-
sion: ∆M

ik = δik/σM
ik

, M ∈ {LME,GP}, where σMik is the
estimated standard deviation of δik :

σMik =
√

(σMεi )2 + σMZi
(tik)2 . (2)

Performance is assessed by the normalised error metric

CMmsqe =
1

K

∑
i∈QD

∑
tik∈TT

ik

(∆M
ik )2 , (3)

where K =
∑
i∈QD

|TTik|, which should ideally be close to
one if the uncertainty intervals are correctly estimated.

Interesting indicators of the asymmetry of large residuals
are

PM+ =
1

K

∑
i=∈QD

,k∈{1,...,ri}

I
[
∆M
ik > 1.96

]
, (4)

where I(·) is the indicator function, and PM− , which is defined
analogously for ∆M

ik < −1.96.

VI. MODEL COMPARISON

The two fitted models differ in the following aspects: (i)
LME strongly constrains the possible evolutions of fitness; (ii)
a common variability of the performance measures is assumed
for LME (a common σ2

ε ), while distinct σ2
εi are used in GP.

The top plot in Fig. 5 shows, for 400 m, the empirical
mean population performance trajectory µ0(t) (dotted black)
and the density of the ages in the complete learning set (in
yellow, values adjusted for visualisation). The GP mean (red
curve) captures closely the observed pattern, while the LME
mean (blue curve) shows a weak agreement with the empirical
curve in the less frequent age ranges. The LME constraint is
less penalising when the population evolution is closer to a
quadratic curve, as for D = 5000 meters.

Fig. 3. Learning (?) and testing (◦) datasets; estimated (?) and predicted (?)
fitness; corresponding confidence intervals for Yi(tik) (black vertical lines),
D = 5000 meters. Top: LME; bottom: GP.

Table II summarises the performance criteria, for two nor-
malisations of the residuals, and Fig. 4 shows the histograms
of the prediction residuals δik for LME (left) and GP (right)
for 400 meters. Both methods lead to a similar residual
distribution, with small biases that are larger for GP than for
LME, see the third column in Table II. A similar behaviour is
observed for other distances.

TABLE II
NEXT YEAR (2017) PERFORMANCE

D M E[δ]M CM
msqe PM

+ ,% PM
− %

σM
ik =

√
(σM

εi
)2 + σM

Zi
(tik)2

400 LME -0.07 0.89 2.84 0.41
GP -0.06 1.13 4.52 2.05

800 LME -0.02 0.77 2.90 0.0
GP -0.03 1.40 4.49 0.79

1500 LME -0.03 0.98 4.60 0.0
GP -0.10 1.15 5.48 0.29

5000 LME -0.05 0.69 3.23 0.0
GP -2.15 1.32 4.7 2.68

10000 LME 0.03 0.93 0.0 0.0
GP 2.78 2.30 9.52 7.14

σM
ik = σM

εi

400 LME -0.07 1.04 3.45 1.42
GP -0.06 1.39 6.57 3.29

800 LME -0.02 0.87 3.17 0.0x
GP -0.03 1.13 5.54 0.79

1500 LME -0.03 1.07 5.17 0.0
GP -0.10 1.30 6.34 0.86

5000 LME -0.05 0.77 4.52 0.0
GP -2.15 2.07 5.37 3.36

10000 LME 0.03 1.08 2.17 4.35
GP -2.78 5.43 14.29 11.90

As the last three columns of Table II show the estimated
variance of the LME residuals tends to be larger than for
GP, i.e., σLME

ik > σGPik . Consequently, PGP− and PGP+ are
always larger than for the LME model and CLME

msqe < CGPmsqe in
all cases. The asymmetry of athlete’s performance variability
is well reflected in the fact that P+ > P− almost always,
confirming that exceptionally bad performances occur more
often than good ones.
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Fig. 4. Histograms of residuals (D = 400 meters). Left: LME, right: GP.

Fig. 5. Estimated population mean performance trajectory (top: 400 m, bottom
5000 m). Red: GP µ(t); blue: LME Z(t, α, β0); black dashed: empirical
estimate µ0(t); yellow: histogram of ages in the dataset.

Ideally, CMmsqe ' 1. Table II shows that CLME
msqe tends

to be below 1, indicating an overestimation of uncertainty,
and that CLME

msqe is, with a single exception, larger than 1,
indicating an underestimation of uncertainty. Neglecting the
uncertainty of the fitness predictions leads to values closer
to 1 for LME, indicating that the noise variance is sufficient
to model expected variability, and fitness uncertainty is often
over-estimated for this model. On the contrary the values
of CGPmsqe are, with one exception, always greater than one,
indicating an uncertainty under-estimation, worst in the bottom
sub-table.

The degradation with distance of the GP models is explained
by the smaller sizes of the learning datasets for larger values
of D (see Table I). LME is much less sensitive to this problem.

The different behaviour of the two methods can be appre-
ciated in Figs. 2 and 3, for 400 and 5000 meters, respectively,
representative of small and large distances. In the plot for 400
meters the different “plasticity” of the two models is obvious,
the GP model being best able to track the athlete trajectory.
This higher plasticity induces also a more reactive behaviour of
the GP model to the observed residuals, adapting faster to the
athlete’s performance variations than LME. Fig. 3, for 5000
meters, is a good example of the situation that is frequent for
larger distances, where a very small number of observations
per individual may be available. The LME model has a wide

uncertainty interval, while the GP model has been able to
closely fit the few observed performances, and predicts a too
small variability.

VII. CONCLUSIONS

The results presented confirm that the constrained LME
model offers a more robust approach to population modelling,
while when the available dataset conveniently samples the
trajectories of the observed individuals, the GP model is best
able to express the dataset detailed characteristics.

A major conclusion of the performance analysis of both
methods concerns the importance of the statistical modelisa-
tion of the individual variability of performance, the {εik}.
Both our models are based on a simple Gaussian assumption,
which, as the plots in the paper show, is a poor model for
the actual observed variability. This is increasingly important
for long running distances, where very large positive outliers
(worst performance, i.e. larger time) are frequent. We consider
that the key point for improving prediction performance in this
application relies on abandoning the assumption of normality
of the εik, using for instance mixture models, that can best
capture the asymmetric intra-individual variability of athlete’s
performances.

Finally, the study confirms the high plasticity of the GP
model, which if enough data is available actually captures the
trends in the set of processed individual trajectories. A present
line of research is to combine the two modelling approaches,
using the GP model to identify a convenient basis for a mixed-
effects model. This would further facilitate the consideration
of exogenous factors, which cannot be naturally incorporated
in the GP model.
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