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Abstract—Modeling data as a linear combination of a
few elements from a learned dictionary has been used
extensively in the recent decade in many fields, such as
machine learning and signal processing. The learning of the
dictionary is usually performed in an unsupervised manner,
which is most suitable for regression tasks. However, for
other purposes, e.g. image classification, it is advantageous
to learn a dictionary from the data in a supervised
way. Such an approach has been referred to as task-
driven dictionary learning. In this work, we integrate this
approach with deep learning. We modify this strategy such
that the dictionary is learned for features obtained by a
convolutional neural network (CNN). The parameters of
the CNN are learned simultaneously with the task-driven
dictionary and with the classifier parameters.

I. INTRODUCTION

In the recent decade many signal and image processing
applications have benefited remarkably from adopting
low dimensional models for the signals of interest. The
most popular form of this low dimensional modeling
assumes that signals admit a sparse representation in
a given dictionary - this is referred to as the "sparsity
model" [1]. A crucial factor in the success of sparse
representation methods is the choice of the dictionary,
which should provide a faithful encoding for a given
signal, but also be able to discriminatively represent
different signals.

Using off-the-shelf dictionaries, such as redundant
wavelets or discrete cosine transform, may suffice for
restoration problems of general images, but will not be
effective enough for specific tasks, such as clasification
of images from a certain domain. Indeed, the dictio-
nary learning (DL) approach, in which the dictionary
is learned from the training data has led to state-of-the-
art results in many practical applications, such as image
reconstruction and image classification.
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There are two main strategies for dictionary learning:
unsupervised DL and supervised DL. Unsupervised DL
methods, which conveniently spare any need for data
labeling, have been widely applied to image processing
tasks, such as image denoising and compression [2], [3],
[4]. Two popular unsupervised DL algorithms are K-
SVD [5] and online DL [6]. However, without using
additional label information of training data, unsuper-
vised DL methods may not acquire discriminative rep-
resentations for signals that belong to different classes.
Therefore, while these methods are powerful for data
reconstruction, they may not be a good choice for classi-
fication tasks. In contrast, supervised DL do use available
class labels of training samples. This class discrimination
information is exploited while learning the dictionary,
and thus leads to better classification performance [7],

[8].

In this work we build on the task-driven dictio-
nary learning framework proposed in [7]. We use this
framework for multiclass classification. However, we
modify the original algorithm such that the dictionary is
learned for features obtained by a convolutional neural
network (CNN) [9]. The parameters of the CNN are
learned simultaneously with the task-driven dictionary
and with the classifier parameters. The proposed method
outperforms the original algorithm that learns a linear
transform of the input data. In addition, in the case of
a small number of training examples, it can get better
performance than the full CNN, from which we extract
the features.

Our effort is related to other recent works that com-
bines neural network training with low parsimonious
data models. For example, in [10] it has been shown
that a CNN may be interpreted as a convolutional sparse
coding process, which has led to theoretical guarantees
for the uniqueness of outputs of each layer of the
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network. In [11] a novel deep network has been proposed
that encodes features of hidden layers with nonnegative
sparse representation. In [12] the network weights were
decomposed as a sparse composition of a fixed set of
filters. In [13], low-rank based loss has been proposed
to improve the performance of neural networks.

II. BACKGROUND

For the sake of completeness, we briefly describe
the unsupervised DL and the (supervised) task-driven
DL. Classical unsupervised dictionary learning tech-
niques consider a finite training set of signals X =
[©1,...,2,] € R™*™ and minimize the empirical cost
function
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with respect to a dictionary D € R™*P_ where each
column of D represents a dictionary element. ¢, (the
subscript u denotes "unsupervised”) is a loss-function
such that ¢, (ax, D) should be small if D is “good”
at representing the signal x in a sparse fashion. Alter-
natively, it is more likely that one is interested in the
minimization of the expected cost

rrgn Egx{lu(x, D)}, 2)

where the expectation is taken relative to the (unknown)
probability distribution p(x) of the data. This kind of
cost functions is usually minimized using stochastic
gradient descent (SGD) methods.

We define ¢, (x, D) as the optimal value of the elastic-
net sparse coding problem [14]

A

1
u(@, D) 2 min |}z Darl + Ml + 2,
3)
where \; and )y are regularization parameters. Setting
A2 = 0 yields the ¢; sparse decomposition problem (also
known as basis pursuit denoising [15] or Lasso [16]),
while using Ay > 0 results in a more stable solution. To
prevent the ¢o-norm of D from being arbitrarily large,
which would lead to arbitrarily small values of «, it is
common to constrain D to the following convex set of
matrices

DE{DeR™?st.Vje{l,...,p} |djll2 <1}
“4)
where {d;} denote the columns of D.

We turn now to describe the task-driven DL formula-
tion. Given a dictionary D, a vector x can be represented
as a sparse vector a*(x, D) defined as the solution of
(3). We assume that each signal € X is associated

with a variable y € ), which we want to predict from
x (e.g., a label in classification tasks). We can now use
the sparse vector a*(x, D) as a feature representation
of a signal « in the following minimization formulation:

. * v 2
min Eoy{ls(y, W, o™ (2, D)} + SIWllE, )

where W are model parameters which we want to learn,
W is a convex set, and v is a regularization parameter. In
this equation, ¢, (the subscript s denotes "supervised”)
is a convex loss function that measures how well one
can predict y by observing a*(x, D) given the model
parameters W. For instance, it can be the square, logis-
tic, or hinge loss. The expectation is taken with respect
to the unknown probability distribution p(x,y) of the
data.

Finally, the task-driven dictionary learning formula-
tion consists of jointly learning W and D by solving

Eay{ts(y, W, 0" (2, D))} + 2| W[}
(6)

Note that the function in the expectation is non-convex
and non-smooth. The non-convexity is typical to DL
problems, and handled by alternating minimization: per-
forming sparse coding with a fixed dictionary, and updat-
ing the dictionary using the obtained representations. The
non-smoothness is mitigated by the expectation operator
together with properties of a*(x;, D), obtained by the
elastic-net formulation with Ay > 0, as detailed in [7].

The formulation (6) is further extended in [7] by
including a linear transform of the input data, represented
by a matrix Z, which allows to increase or decrease the
dimension of the features x. Thus, we have

Em,y{&‘(y, W,a"(Zz, D))}

min
DeD,Wew

min
DeD,WeW,ZcZ
11 1%
+ A Wik + 21Z1. o

where 11 and vy are two regularization parameters, and
Z is a convex set.

The optimization of (7) can be carried out using the
projected stochastic gradient descent scheme, presented
in Algorithm 1.

III. THE PROPOSED METHOD

Inspired by the excellent performance of recent deep-
learning-based methods at different tasks [17], [18], [19],
[20], we turn to extend the task-driven DL such that the
dictionary is learned for features obtained by a convo-
lutional neural network (CNN) [9], instead of a simple
linear transform of the input data. In more details, instead
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Algorithm 1: SGD algorithm for task-driven DL

Input: p(x,y) (a way to draw i.i.d samples),
A1, Aa, 1, o (regularization parameters),
D eD,W eW,Z e Z (initializations), T'
(number of iterations), ¢, p (learning rate
parameters).

fort =11t T do

Draw (x,y) from p(x,y);

Sparse coding: compute a*(Zx, D) using

elastic-net;

A={je{l,....p} : a’[j] # 0}

ﬁx = (DKDA + )\21—)_1va/\£s(yu w, a*);
/B;k\c =0;

pi = min(p, p);

W =Iw[W

—Pt (ngs(ya Wv a*) + I/1W)};
Z =112]Z — p, (DB*2” + mZ)];
D =TpD
—p (-DB"a’T + (Zx — Da*)@T)];

end
Output: D e DW e W, Z € Z.

of training the dictionary for sparse representations of the
linearly transformed x:
ilinear = va (8)
we train it for sparse representations of the features
Eonn £ fonn(w; 2), ©)
where fonn is a non-linear function of x, obtained by
common building blocks of CNNs, such as convolutional
layers and max-pooling layers. z is an IV, x 1 vector
that denotes all the parameters of the network, e.g.
the weights of the convolutional layers. The proposed
architecture is demonstrated in Fig. 1. Note that the
parameters of the CNN layers are not fixed. They are
learned simultaneously with the task-driven dictionary D

and with the model parameters W. Thus, the formulation
in (7) is extended to

Eoy {ls (. W, (2(x; 2), D)) }

141 1%}
+ 2 W + 2213

min
DeD,WeW,zeZ

(10)

Note the general dependency of a* on z through x,
which equals to @;jjncqr When linear transformation is
used and to oy when a CNN is employed.

We restrict ourselves to standard static neural net-
works, which have bounded results given that their inputs
are bounded [21]. Therefore, the function a* (Zon N, D)

xeR" riERﬁl )

Rl

Fig. 1: Proposed architecture for joint dictionary and CNN
learning.

DeR™

acR?

is still uniformly Lipschitz, and the differentiability
proofs in [7] are still valid. However, the update rule
for z has to be modified to our general case

z=1z[z — pt (Vols + 102)]. (11
Following the computation technique of [22], we have
Py
Vil = 22D, (12)
0z

where we used the chain rule, and 3* is defined exactly
as in Algorithm 1. As a sanity check, in the case € = Zx
(where Z € R™*™), we have
0(Zx)
Ovec(Z)
where ® is the Kronecker product and I is the identity
matrix of size m X m. Therefore, we have
V.ls = (x®I;)DB* = (x ® D)B* = vec(DB*z"),
(14)

which is the vectorization of 9¢s/0Z = DB*zT that
appears in [7]. Exploiting the fact that the optimization
algorithm is based on stochastic gradient descent, we use
backpropagation [23] to calculate V ./, with the vector
D3 being used as the derivatives of the network w.r.t.
the feature layer’s output.

=z ® Iy, 13)

IV. APPLICATION TO DIGITS CLASSIFICATION

We consider here a classification task using the
MNIST handwritten digits dataset [24], which contains
70,000 28 x 28 images, 60,000 of them for training and
10,000 for testing.

We use a single dictionary and a multiclass loss func-
tion. This strategy has less computational cost compared
to other strategies such as one-versus-all and one-versus-
one. Thus, in our setting, Y = {1,...,10}. Given a
vector x, we want to learn (jointly with D and z) the
parameters W € RP*19 of a linear model to predict
y € Y, using the sparse representation a*(&, D) as
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features. Each column of W is associated with a specific
class, i.e. W = [wy, ..., wio], and the maximal entry of
W T a* determines the predicted class. The loss function
that we use is the categorical cross-entropy loss (also
known as softmax loss), which is given by

T %
e'wya

)
geY

Note that the derivatives required for Algorithm 1 can

be computed easily. Let

ES (y7 Wa a*) = _10g<

w!a*
ey
P& s, (16)
R
geY
then, it can be shown that
ols(y, W, o* ‘ ‘
(&‘é*[i]) =D (~wylil +wgld) Py, (A7)
geY
s (y, W, a®) ) 3
—amen =@l (Py—ofg—yl), (18)
8wg[z] [i] (Py [ 1)

where §][-] denotes the Kronecker delta.
We compare the performance of three methods:

o full-CNN: an 8-layers CNN from [25].
e TDDL-LIN: task-driven DL with & = Zx.
o TDDL-CNN: task-driven with & = fonn(x; 2).

For the full-CNN, we use the exact 8-layers CNN
architecture and training scheme (including the optimiza-
tion algorithm) supplied in the MatConvNet toolbox [25]
for the MNIST dataset.

For the task-driven methods, similar to [7], each image
is normalized to zero mean and unit norm. Also, it
is worthwhile to decrease the dimension of the input
vectors in order to reduce the runtime. For TDDL-LIN
we use a 196 x 784 matrix Z, which is initialized with
entries independently drawn from the standard normal
distribution A/ (0, 1). For TDDL-CNN we keep only the
first 4 layers of the full CNN, and reduce the number of
filters in the third layer. The first layer is a convolutional
layer with 20 filters of size 5 x 5 x 1 and stride 1.
The second layer is a 2 X 2 max-pooling with stride
2. The third layer is a convolutional layer with 12 filters
of size 5 x 5 x 20 and stride 1. The fourth layer is a
2 x 2 max-pooling with stride 2. For an input image of
size 28 x 28, this results with a 192 x 1 feature vector.
We initialize the weights with standard normal weights,
and the biases with zeros. Note that the linear transform
of TDDL-LIN has 153,664 learnable parameters, while
the non-linear transform of TDDL-CNN has only 6,532
learnable parameters.

TABLE I: Accuracy rates of different classification methods

Train set size | full-CNN | TDDL-LIN | TDDL-CNN
60K 0.990 0.971 0.984
1K 0.917 0.898 0.928

For both TDDL-based methods, we use an m x 400
dictionary D, which is initialized in the same manner.
From each class, we take 40 input features (i.e. 40
x vectors, using the fixed initial value of z or Z) to
initialize an online dictionary learning (ODL) algorithm
applied only on training samples from the same class.
The resulted 40 atoms from each class are then collected
into D. This strategy has led to better performance
and more discriminative sparse representations. With this
initial dictionary D at hand, we obtain an initial value of
W by optimizing (5) (again, z is fixed), and get a triplet
of parameters (D, W, z), which are used to initialize the
task-driven DL algorithm.

We use \y = 0.8 and A\y = 4 for TDDL-LIN
and TDDL-CNN, respectively. These choices lead to
an average sparsity of 25-35 for a* at the end of the
task-driven DL (note that after ODL alone, the sparsity
is about 10, but it grows during the TDDL, as the
classification error reduces, making the representation
more discriminative). The rest of the parameters are
Ao = 0 (though the proof for differentiability [7] requires
Ao > 0, the algorithm still converged with Ay = 0),
v1 =0.1, v =0, tg = 4,000 and p = 0.05. The mini-
batches size is 100.

We perform two experiments. In the first one, we use
all the training data as is (i.e. 60,000 training samples)
with T' = 40,000. The second experiment reflects an
extreme case, in which only 100 training samples are
given per class (i.e. 1,000 training samples). The latter
experiment is repeated 20 times with 7" = 1,000, each
time for a different subset of 100 training samples.
Table I summarizes the accuracy rates of the examined
methods on the test set.

Fig. 2 presents the model parameters W (w,, for each
y € ) that were learned for TDDL-CNN in the first
experiment. Note that the classifier emphasizes different
indices of a* (i.e., using different dictionary atoms) for
each class, a fact which implies that the dictionary is
discriminative.

From the results in Table I, it can be concluded that
TDDL-CNN outperforms TDDL-LIN. It can be also
observed that TDDL-CNN outperforms the full-CNN
when the labeled data is limited. This demonstrates that it
may be possible to improve CNN performance by adding
a data-model prior in the learning process.
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Fig. 2: The learned w,, y € ), for TDDL-CNN (first exp.).

V. CONCLUSION

In this work we have proposed a CNN based task-
driven dictionary learning, where the parameters of the
CNN are optimized simultaneously with the dictionary
and a given classifier. Our method clearly outperforms
task-driven dictionary learning that is restricted to a
linear transform of the input data. Moreover, our work
shows the potential of improving the performance of
deep neural networks in the presence of a small number
of training examples using the sparsity prior. It also
leads to the following question: Is it possible to use
the unlabeled data to improve the dictionary and further
increase the performance gap between TDDL-CNN and
full-CNN? One approach is using the semi-supervised
formulation in [7] combined with a CNN. Yet, our efforts
in this direction have led to a small improvement (e.g. the
accuracy of TDDL-CNN for MNIST with 1K training
samples increased from 0.928 to 0.935). Presumably, the
limited improvement follows from the fact that a plain
unsupervised dictionary learning makes the dictionary
less discriminative. Thus, we leave the semi-supervised
learning task to a future work. Such a future work may
examine also other deep architectures and loss functions.

REFERENCES

[11 A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of signals
and images,” SIAM review, vol. 51, no. 1, pp. 34-81, 2009.

[2] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE Trans.
Imag. Proc., vol. 15, no. 12, pp. 3736-3745, 2006.

[3] O. Bryt and M. Elad, “Compression of facial images using the
K-SVD algorithm,” Journal of Visual Communication and Image
Representation, vol. 19, no. 4, pp. 270-282, 2008.

[4] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-
local sparse models for image restoration,” in /CCV, 20009.

[5] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Transactions on signal processing, vol. 54, no. 11,
pp. 4311-4322, 2006.

[6]
[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]
[20]
[21]
[22]

(23]

[24]

[25]

1903

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary
learning for sparse coding,” in /CML, 2009.

J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 34, no. 4, pp. 791-804, 2012.

Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent K-SVD:
Learning a discriminative dictionary for recognition,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 35,
no. 11, pp. 2651-2664, 2013.

Y. LeCun, Y. Bengio, et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and
neural networks, vol. 3361, no. 10, p. 1995, 1995.

V. Papyan, Y. Romano, and M. Elad, “Convolutional neural
networks analyzed via convolutional sparse coding,” Journal of
Machine Learning Research, vol. 18, no. 83, pp. 1-52, 2017.
X. Sun, N. M. Nasrabadi, and T. D. Tran, “Supervised deep sparse
coding networks,” arXiv:1701.08349, 2017.

Q. Qiu, X. Cheng, R. Calderbank, and G. Sapiro, “Dcfnet:
Deep neural network with decomposed convolutional filters,”
arXiv:1802.04145, 2018.

J. Lezama, Q. Qiu, P. Muse, and G. Sapiro, “OLE: Orthogonal
low-rank embedding, a plug and play geometric loss for deep
learning,” in CVPR, 2018.

H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005.
S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM review, vol. 43, no. 1,
pp. 129-159, 2001.

R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), pp. 267-288, 1996.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.
G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on audio, speech, and language
processing, vol. 20, no. 1, pp. 3042, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016.

J. Bruna, A. Szlam, and Y. LeCun, “Signal recovery from pooling
representations,” in /CML, 2014.

J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant
sparse coding,” in CVPR, 2010.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” tech. rep., California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, vol. 2, 2010.

A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural
networks for Matlab,” in ACM international conference on Mul-
timedia, pp. 689-692, 2015.





