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Abstract—The visit patterns of insects to specific flowers at
specific times during the diurnal cycle and across the season
play important roles in pollination biology. Thus, the ability
to automatically detect flowers and visitors occurring in video
sequences greatly reduces the manual human efforts needed to
collect such data. Data-dependent approaches, such as supervised
machine learning algorithms, have become the core component in
several automation systems. In this paper, we describe a flower
and visitor detection system using deep Convolutional Neural
Networks (CNN). Experiments conducted in image sequences
collected during field work in Greenland during June-July 2017
indicate that the system is robust to different shading and
illumination conditions, inherent in the images collected in the
outdoor environments.

I. INTRODUCTION

In recent years, deep CNNs have become the core com-
ponent in several visual inference tasks ranging from object
classification, object detection to saliency segmentation [1],
[21, [3], [4], [5]. Over the years, the development of Graphical
Processing Units (GPUs) and the availability of large-scale
datasets have enabled us to train large and deep CNNs with
millions of parameters with better and better generalization
performance. The success of CNNs in recognizing human-
familiar objects such as those in ImageNet challenge has
motivated researchers in different fields to validate the use
of CNNss in problems of their domain. While the performance
of an automatic visual inference system depends on several
factors, such as the amount of available data, the resolution
of the input images or the variation in poses, shading or
illumination conditions, CNNs have shown promising results
in several application domains [6], [7], [8], [9], [10], [11].

In order to study the behaviors of different types of insects
that visit a flower bed and their impact on pollination or
reproduction patterns, several types of information should be
analyzed, including visitation rates or visiting patterns between
flowers within the same field. Data collection following a
manual process greatly based on human efforts is traditionally
done by observations in the field [12], or more recently by
searching and annotating frames of video sequences recorded
in the field [13]. Without any automation, data collection step
is costly and inherently time-consuming, since it accounts for
long time periods to collect adequate information to draw
reliable conclusions. For example, by observing the visiting
patterns of insects throughout four-month periods, the authors
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Fig. 1. Bounding box annotations for flowers (green) and visitor (red)

in [14] noticed the high discrepancy in frequency between
different types of insects. With the availability of an automatic
system that can reliably detect flowers within a video frame
and further perform visitor detection, behavioral patterns of
individual flowers and visitors can be captured, helping in
providing extensive statistical evidence, validation or insights
into the pollination process or the response of both plants and
insects to environmental changes.

While using an automatic visual inference system seems to
be straightforward, there are inherent factors that could affect
performance in practice, such as different imaging conditions
throughout the day. To the best of our knowledge, there is
yet any work that attempts to validate traditional image pro-
cessing techniques, such as image segmentation, or the use of
machine learning models to build a flower and visitor detection
system in the wild, that would facilitate the study of related
biological indices. In this paper, we describe a method for both
flower and visitor detection in unconstrained conditions (in the
wild). During a preliminary study, we identified weaknesses
of standard image processing approaches related to different
lighting conditions and light exposure changes that might
appear in the real application scenario, leading to unreliable
performance levels. To overcome these issues, we propose a
Machine Learning solution that exploits CNNs for both flower-
based image segmentation and visitor detection.
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Fig. 2. Flower and visitor detection pipeline

II. RELATED WORK

In this Section, we provide an overview of methods targeting
related problems, under various experimental and application
settings. Several attempts have been made to utilize machine
learning techniques in an automatic system that recognizes
different plant species or insects [9], [7], [15], [8], [10], [6],
[11], [16]. Existing works, however, focus on a restricted
scenario focusing on the classification images depicting a
single object. In these settings, it is assumed that a close-
range image can be captured that has a single object located
at the center of the image patch. For example, the flower
classification database [15] contains 17 different flower species
with images capturing only few individuals located in the
center. Similarly, plant identification through leaf dataset [10]
only contains preprocessed patches depicting a single leaf.
These datasets were created to focus on the problem of fine-
grained classification between similar species, rather than the
task of target/object localization within a natural scene that can
possibly include multiple object instances at the same time. In
addition, the images have been taken with high resolution in
an controlled environment, in which the variation in imaging
conditions is minimal.

Works in [7], [9] develop automatic fruit detection systems
in a harvesting robot. The resemblance between our work
and the fruit detection problem is that both deal with natural
outdoor imagery that can contain multiple object instances,
each of which only accounts for a relatively small area with
respect to the whole scene. While flowers and fruits are usually
salient objects in an orchard scene, the appearance of flower

TABLE I
DATASET STATISTICS

#Frames
650

#Flowers (train/test)
4590 / 664

#£Visitors (train/test)
441/ 110
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visitors in some cases even poses a difficulty for human
observers to detect, due to relatively small sizes and potential
occlusion.

III. FLOWER AND VISITOR RECOGNITION SYSTEM

A. Dataset

Data used in our work were collected using time-lapse
photography during fieldwork in Greenland near Narsarsuaq
during June-July 2017. Greenland is an ideal test location
because species diversity of potential flower visitors is remark-
ably low even compared to other parts of the Arctic. We focus
on the widespread artic plant species Dryas integrifolia. At
the study site, the most common flower visitors are syrphid
flies (Syrphidae, Diptera). Since flower visitors only appear
at a specific time during the day, and the appearance time
varies from day to day, in order to collect images for the
dataset preparation step, a digital camera is setup above a
flower bed to capture timelapse video throughout the days.
We used two different video sequences captured from cameras
placed above two different flower beds, to serve as training and
validation data. The use of different validation and training
sequences allowed us to measure the generalization of the
developed system on unseen data capturing the same flower
species in different conditions. From the two video sequences,
we sampled frames during a day with varying illuminating and
shading conditions to ensure a diversity of outdoor imagery
effects in both training and validation sets. The images are
recorded with Wingscapes TimelapseCam Pro cameras and
stored in JPEG format at 6080 x 3420 resolution. From the
two sets of images coming from two different flower beds,
hereby referred to as Setl and Set2, we annotated the flowers
and visitors with rectangular bounding boxes. Example image
with annotated bounding boxes are shown in Figure 1 and the
statistics of the annotated dataset are given in Table I
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B. Flower and Visitor Detection Pipeline

While visitors can appear anywhere within the frame, in
this study, we are only interested in those visiting the flowers.
Thus, our automatic detection system operates two processing
steps: image segmentation for the detection of flowers in the
scene, and classification of flower patches based on whether
they include a visitor or not. Following such a hierarchical
process highly reduces the processing time per video frame
since, as will be described in the following, flower detection
can be conducted at a much lower image resolution, while the
task of visitor detection requires high resolution image patches.
This is due to that visitors are relatively small and can undergo
potential occlusion. The detection pipeline is illustrated in
Figure 2.

Fig. 3. Predicted bounding boxes (red) generated by unsupervised image
segmentation in proper illumination condition

For flower detection, we followed the sliding window
approach, where windows of 64 x 64 pixels are classified
using a CNN trained on a binary flower/no-flower classifi-
cation problem. The positive training samples are generated
by the annotated bounding box information coming from
Setl. Since the number of annotated video frames is small,
data augmentation was used during training by randomly
expanding/shrinking the bounding box within 10% of each
dimension before resizing to 64 x 64. Negative training samples
are generated by randomly sampling image patches having
less than 30% overlap with ground-truth boxes. Similar data
generation steps are applied to Set2 to serve as validation
data on patch-based level. To perform the flower localization
step in the full-scale video frames, we resized frames to only
10% of the original resolution, i.e., 608 x 342, then slid the
network across the frame with a stride of 10 pixels to generate
the prediction. The output of the flower detection step is a
map indicating the probability of a pixel to correspond to a
bounding box depicting a flower, which is then thresholded as
shown in Figure 5.

For visitor detection, we divided the labeled data in Set2 into
training and validation sets. The annotation information was
used to extract flower patches that contain a visitor as positive
samples and those without visitors as negative samples. These
patches were used to train another CNN for visitor detection.
During the evaluation, based on the flower probability map
created by the flower detection network, the binary mask is
generated, and flower patches are generated by drawing tight
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bounding boxes covering the segments. These flower patches
are evaluated by the visitor detection network. In this manner,
the visitor detection step is made without exhaustive sliding
window search. For the success of the visitor detection step,
it is necessary that the flower detection network can capture
all flower instances appearing in the input frame.

Fig. 4. Predicted bounding box (red box covering entire image) generated by
unsupervised image segmentation on bright image

IV. EXPERIMENTS
A. Experiment protocol

We evaluate our detection system based on two metrics:
the misdetection rate (MR) and false positives per image
(FPPI). MR is calculated as the ratio between the number of
misdetections and the total number of objects in the evaluation
set while FPPI is calculated as the ratio between the total
number of false positives and the number of input frames. It
should be noted that in our flower and visitor detection tasks,
both metrics reflect the efficiency of the detection system: an
efficient flower detection network should produce low MR to
ensure that all flower patches potentially containing a visitor
are fed to the visitor detection network, as well as low FPPI to
reduce computation overhead of the visitor detection network.
Likewise, it is important for the following biological analysis
task that all appearances of the visitors are detected, while
minimum false positives are returned to minimize manual re-
evaluation efforts if needed.

To determine whether the predicted bounding box is a
correct detection or misdetection, we used intersection-over-
minimum (IOM), which was also used in the task of moth
detection [8]. The IOM between two bounding boxes (i.e., the
ground-truth and the predicted boxes) is calculated as the ratio
between intersection area divided by the minimum area of the
two bounding boxes. A detection is counted as correct when
IOM > 0.5. While intersection-over-union (IOU) is a popular
criterion used in several detection tasks, such as pedestrian
detection, we chose to use IOM since we are more interested
in the detection and localization of flower and visitor patches
within the input frame rather than the precise prediction of the
bounding boxes with respect to the ground-truth. For example,
if two flowers overlap in the input frame and the ground truth
information might contain different bounding boxes for each
flower, by boxing the highly probable regions in the flower
probability map, our detection system might generate a single
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bounding box for the two flowers, which may lead to a low
IOU score, while being a totally valid and useful prediction
in our scenario.

For both flower and visitor detection tasks, we adopted a
network architecture similar to the one used in [17], with 12
convolutional layers and a global average pooling layer at the
output of the network. Both networks were trained using Adam
optimizer [18]. The weight decay regularization was set to
0.0001, and Dropout (with p = 0.3) was applied after pooling
layers. During training, input patches were randomly shifted
as well as horizontally flipped in order to enrich variations
of positive and negative sample appearances. We trained
our networks for 100 epochs with decaying learning rates
(0.01,0.005,0.001, 0.0005, 0.0001) after every 20 epochs. The
mini-batch size was set to 128 samples.

Fig. 6. Flower patch with occluded visitor

B. Results

Since flowers might have distinctive color information as
compared to the background, one might propose to use
histogram-based image segmentation techniques that require
no annotation information. As we will show in this section,
traditional unsupervised image segmentation techniques highly
rely on predefined hyper-parameter values. Moreover, varying
outdoor imagery conditions greatly affect the segmentation
results, forbidding their application in outdoor scenarios. Par-
ticularly, we experimented with an unsupervised segmentation
applied in HSV color-space capturing the chromaticity infor-
mation. We followed an approach combining the segmentation
masks obtained by thresholding the H and V channels based on
thresholds calculated by following [19]. In proper illumination
conditions, the unsupervised approach produces reasonable
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TABLE II
PERFORMANCE (VALIDATION SET)

Misdetection Rate (MR)
8.12%
3.90%

False Positives Per Image (FPPI)
7.25
1.41

Flower
Visitor

results with few misdetections, as illustrated in Figure 3. On
the contrary, the unsupervised approach fails miserably when
the brightness is high, as illustrated in Figure 4. The advantage
of a supervised system is that invariance in the varying outdoor
conditions can be learned to some degrees. This can be seen in
Figure 7, where the predicted bounding boxes are generated on
the same bright input frame by using the CNN-based detection
method.

Fig. 7. CNN-generated flower bounding boxes (red) on a bright image

During training, the patch-based performance of both flower
and visitor detection networks are relatively high with classi-
fication error less than 5%. We are, however, interested in
the performance of the system on the input frames, i.e., the
full-scale images. Table II shows the performance of both
networks on the full-scale images coming from the validation
set. It is clear that the evaluated system performs relatively
well both in terms of MR and FPPI. Especially the visitor
detection network, with only 3.9% misdetections and about 1.5
false positive per image. While the number of false positives
returned by the flower detection network is not perfect, this
does not affect much the practicality of the system. On the
contrary, the FPPI measure in the visitor detection phase plays
a more important role since this number reflects the potential
overhead imposed on manual re-evaluation, as mentioned in
the previous sections. For the visitor detection case, there are
intrinsic reasons that can cause an automatic system to return
false positives or to fail to detect a visitor. For example, in
the process of searching for nectar, a flower visitor might be
occluded when observed from the viewpoint of the camera,
as illustrated in Figure 6. The inclusion of these cases in
the training set could improve the misdetection rate. This,
however, might lead the network to falsely classify flowers
with dark pistil or stamen as having a visitor when the number
of training samples is not high enough.
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V. CONCLUSIONS

In this paper, we described a methodology for flower and
visitor detection system using CNNs. Such an approach can
be used to reduce the manual efforts required to collect
evidence related to biological patterns in such unconstrained
environmental settings. As opposed to popular believes that
training an efficient CNN requires a huge amount of data,
our CNNs, trained on a relatively small number of annotated
inputs, showed good performance in terms of misdetection
rate and false positives per image. Experiments have shown
that the proposed detection pipeline can be used to build an
automatic system.
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