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Abstract—Gravitational-wave (GW) observations with a net-
work of more than two advanced detectors open the possibility
of reconstructing the two polarizations predicted by General
Relativity. We propose to address this problem using sparsity
promoting regularizations. We consider a variety of techniques,
including “structured sparsity” that allows to explicitly model
the intrinsic clustering effect occurring in the time-frequency
representation of GW transient signals. The proposed methods
are evaluated with simulated GW signals and real-world noise.
Numerical simulations show the advantages of the proposed
approaches.

I. INTRODUCTION

Gravitational-wave (GW) observations offer new perspec-
tives in astronomy [1], giving access to objects such as black-
hole binaries that were hidden to more conventional observato-
ries. The network of advanced detectors initiated by Advanced
LIGO, recently joined by Advanced Virgo will expand in the
next future with the detector Kagra in Japan and LIGO-India.
More detectors mean more sensitive combined observations
that allow reaching more distant sources, better sky coverage,
and better resolution of the source position in the sky. This
also allows better constraints on the two GW polarizations
denoted h+ and h×, predicted by General Relativity, which
opens the possibility of new tests for this fundamental theory
of gravity and to infer non-standard effects occurring in the
source dynamics, such as the precession of the compact binary
orbital plane [2].

Each detector receives a linear combination of the two polar-
izations. Therefore, reconstructing GW polarizations from the
observations is an inverse problem, that can be ill-posed [3]–
[5]. Coherent data analysis techniques allow estimating the de-
tector response i.e., the GW signal received by each detector.
These include the likelihood-based search algorithm coherent
Waveburst [6] and the Bayesian algorithm Bayeswave [7]. So
far, there are only a limited number of studies such as [8]
about the estimation of the polarizations rather the detector
responses. This is the main topic of interest in this proceeding.

Regularization is a key ingredient in the resolution of
inverse problems [9]. Here, we investigate the potential of
sparsity promoting priors [10] to regularize the inversion. The
motivation is that the transient GW can be well described
by few bright outlier pixels in a time-frequency transform,

therefore a sparse time-frequency representation. Sparsity reg-
ularization has been previously studied in the context of GW
burst searches in [11], [12] and in this paper, we introduce
new polarization reconstruction algorithms that use sparsity
regularization, and compare the reconstruction error to the one
obtained with other approaches.

In Sec II, we formulate the reconstruction problem. Sec III
introduces the considered reconstruction methods. Numerical
evaluation is performed in Sec IV and Sec V concludes the
paper.

II. FORMULATION OF THE PROBLEM

According to General Relativity, GWs possess by two inde-
pendent polarizations h+ and h×. Detectors measure a linear
combination of those two polarizations. The signal received by
the k-th detector in the observing network can be expressed
as [1]:

xk(t) = fTk h(t− τk) + nk(t), (1)

where fk = [Fk+, Fk×]
T is the antenna response of the

considered detector to the polarizations h = [h+, h×]
T . Here,

τk denotes the delay in the arrival time at the detector location
relative to the Earth center taken as the reference location.
In (1), both fk and τk are known functions of the source
sky direction. GW observations are limited by an additive
background noise nk(t) which is assumed to be Gaussian
and (locally) stationary with power spectral density Sk(f).
We assume that the source sky direction is known, so that the
beam pattern fk and the delay τk are fixed. This allows to
simplify the problem and concentrate on the effect of signal
regularization, the focus of this article. This assumption also
corresponds to the practical case where the position of the
source is obtained by other (non-GW) observables (see e.g.,
[13]).

With no loss of generality, the observation of the detector
network can now be written as:

x(t) = Fh(t) + n(t), (2)

where x = [x1, . . . , xK ]
T , n = [n1, . . . , nK ]

T and the
(known) beam pattern matrix F =

[
fT1 , . . . , f

T
K

]T
. The goal

of the polarization reconstruction problem is to estimate h(t)
from the noisy observations x(t).
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We map the data to the time-frequency domain using the
short-time Fourier transform (STFT) by LTFAT package [14].
In our simulation, we used a Hann window of length 125 ms
with 87.5% overlap). We denote xk(f, τ) the STFT coeffi-
cients of xk(t).

We assume that the noise power spectral density Sk(f) can
be estimated from a stretch of noise-only data; so that whitened
observations can be produced directly in the time-frequency
domain with x̃k(f, τ) = xk(f, τ)/

√
Sk(f).

The observation equation (2) becomes:

x̃(f, τ) = F̃(f)h(f, τ) + ñ(f, τ), (3)

where x̃(f, τ) = [x̃1(f, τ), . . .]
T collects the whitened obser-

vations, F̃(f) =
[
fT1 /

√
S1(f), . . .

]T
is the noise-scaled beam

pattern matrix and h(f, τ) and ñ(f, τ) are respectively the
STFT coefficients of h(t) and whitened noise ñ(t). By stack-
ing coefficients obtained at given frequency f for different
times into matrices Eq. (3) can be conveniently re-expressed
as:

X̃f = F̃(f)Hf + Ñf , (4)

where X̃f ∈ CK×T , Hf ∈ C2×T and Ñf ∈ CK×T with
T , the number of time bins in the STFT transform. In this
formulation, the goal is to estimate Hf from X̃f at each
frequency f .

III. RESOLVING THE INVERSE PROBLEM

We now review the reconstruction methods we consider in
this article.

A. Truncated least-square inversion

The search algorithm in [15] identifies a set of “bright” time-
frequency coefficients with an energy E(f, τ) =

∑
k x̃

2
k(f, τ)

above a threshold η, defined from the detector noise level. In-
spired by this approach and based on the observation equation
(3), the truncated least square (TLS) inversion reads

min
h(f,τ)

∑
E(f,τ)>η

‖x̃(f, τ)− F̃(f)h(f, τ)‖22. (5)

The above minimization can be solved explicitly by:

hTLS(f, τ) = [F̃(f)T F̃(f)]−1F̃(f)T x̃(f, τ), (6)

for all selected pixels, and zero otherwise.

B. Inversion with `1 sparsity regularization

GW transients are expected to be sparse in the time-
frequency domain. We propose to use this property to reg-
ularize the reconstruction of the polarizations. The `1 norm
is often used as a penalty for the sparsity [16]. From (4), the
reconstruction with this penalization reads:

min
H̃f

Q(Hf ) + λf‖Hf‖1, (7)

where Q(Hf ) ≡ 1
2‖X̃f−F̃(f)Hf‖2F and λf is a hyperparam-

eter that balances the data fidelity and the regularization. ‖·‖F

is the Frobenius norm of a matrix. Note that (7) is frequency-
wise. In statistics, this problem and related algorithm is
referred to as Lasso [17].

The problem (7) can be tackled using the proximal-based
algorithm [18]. We recall that the proximal operator which
corresponds to the `1 norm is the entry-wise soft-thresholding:

Sλf
(Hf ) : ĥj,f = hj,f (1− λf/|hj,f |)+, (8)

where hj,f is the j-th element of Hf and (h)+ ≡ max(0, h).
The algorithm is given in Algorithm 1. The Lipschitz

constant of ∇Q(H̃f ) is Lf = ‖F̃(f)T F̃(f)‖2 where ‖ · ‖2
denotes the spectral norm of a matrix.

Algorithm 1: Lasso

Initialisation : H(1)
f ∈ C2×T , i = 1;

repeat
∇Q(H

(i)
f ) = −F̃T (f)

(
X̃f − F̃(f)H(i)

f

)
;

H
(i+1)
f = Sλf/Lf

(
H

(i)
f −∇Q(H

(i)
f )/Lf

)
;

i = i+ 1;
until convergence;

C. Inversion with structured sparsity

The sparsity penalty considered in the previous section
corresponds to a Bayesian prior where all time-frequency
coefficients are drawn independently. This ignores the time-
frequency structure expected in transient GW signals: the
signal power typically accumulates in clusters in the time-
frequency domain. To include this effect in our model, we
consider the structured sparsity penalty known as Windowed-
Group-Lasso (WGL). This type of penalty has been applied
with success for audio declipping [19] and source separa-
tion [20].

The WGL operator replaces the soft-thresholding operator
in (8) by:

SWGL
λf

(Hf ) : ĥj,f = hj,f (1− λf/h(w)
j,f )

+, (9)

where

h
(w)
j,f =

 ∑
j′∈Nj,f

w
(j,f)
j′,f |hj′,f |

2

1/2

(10)

with Nj,f , the neighborhood of point (j, f) associated with
weights w(j,f)

j′,f . This operator corresponds to a convex regu-
larizer involving a mixed norm [21].

The mechanism of this shrinkage operator is to select a
coefficient if the energy in its neighborhood is sufficiently
large. Consequently, isolated large coefficients tends to be
discarded, while small coefficients in the middle of larger ones
are kept [21]. The neighborhood, as well as the weights, is
usually pre-defined based on the morphological property of the
considered signals. Different forms of neighborhood promote
different clustering effects. Although the observation equations
are formulated for a fixed frequencies, neighborhoods across
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covering different frequencies can nonetheless be chosen to
promote clustering along the frequency direction as well. The
corresponding algorithm is shown in Algorithm 2.

Algorithm 2: WGL

Initialisation : H(1)
f ∈ C2×T , i = 1;

repeat
∇Q(H

(i)
f ) = −F̃T (f)

(
X̃f − F̃(f)H(i)

f

)
;

H
(i+1)
f = SWGL

λf/Lf

(
H

(i)
f −∇Q(H

(i)
f )/Lf

)
;

i = i+ 1;
until convergence;

IV. EXPERIMENTS

In this section, we evaluate the proposed algorithms. The
TLS reconstruction method is used as the reference baseline.

We use a GW signal of an equal-mass non-spinning black-
hole binary with total mass 50 M� at a sample rate of
4096 Hz. 1.

We choose to place the source at an arbitrary position in
the sky corresponding to RA = 82.59◦, dec = 54.31◦ at GPS
time 1187007042 (Thu Aug 17 12:10:24 GMT 2017). This
source direction leads to the beam pattern matrix as follows 2:

F =

 0.8402 −0.0712
−0.8223 0.2813
−0.1199 0.6785

 . (11)

We intentionally choose this beam pattern matrix which
avoids the rank deficiency problem [5]. We manually de-
creased the noise in Virgo by a factor of 3 in order to enhance
the SNR fraction brought by the × polarization, and be more
representative of future science runs. The input SNR [1] varies
from ∼ 24 to ∼ 240.

We compare between the TLS method in (6) and the pro-
posed sparsity-based algorithms with Lasso (8) and WGL (9)
shrinkage operators. The methods are compared against their
relative reconstruction error (RRE), classically used as a
figure-of-merit:

RRE =
‖H− Ĥ‖2F
‖H‖2F

, (12)

where Ĥ is the estimated polarizations in the matrix form.
The reconstruction level of all the presented methods de-

pends on the thresholding chosen in the algorithms. Therefore,
we test several values for the threshold and then select the one
which corresponds to the best performance. For the proposed
algorithms, we use the same threshold for all frequencies for
the sake of simplicity. Although such an oracle is not possible
in practice, it allows a best-case comparison of the different
methods. We also show the performance of the presented
algorithms as a function of the sparsity level of the estimation.

1We used the software package LALSuite https://wiki.ligo.org/DASWG/
LALSuite

2The order from top to bottom is LIGO Hanford, LIGO Livingston and
Virgo.

Fig. 1 shows the performance as a function of the input
SNR. The neighborhood in these experiments for WGL is
chosen to be horizontal and equal-weighted which promotes
the clustering effect in the time direction. The size of the
neighborhood is fixed to 5 time-frequency pixels. We also
tested different sizes, and neighborhood in the vertical direc-
tion, and find out similar performances. We may investigate
neighborhoods that are adapted to typical frequency evolution
(horizontal for the early/low-frequency part of the signal where
the frequency varies slowly and vertical for the later/high-
frequency part of the signal close to the final merger). The
reconstruction is performed with 10 different noise realiza-
tions. The mean RRE and error bars are shown in the figure.
The considered methods of TLS, Lasso and WGL shows
comparable RRE for the considered range of input SNR.
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Fig. 1. Reconstruction performance vs input SNR. The mean value and 1-
sigma error bars obtained over 10 noise realizations are shown.

However, the reconstructions from the various methods dif-
fer significantly and the RRE figure-of-merit does not capture
that difference. In Fig. 2 we show the performance of TLS and
WGL for one noise realization as a function of the sparsity
level 3 of the estimation for different input SNR.

At the minimum RRE working point, the WGL method
selects more pixels than the TLS method. We illustrate this in
Fig. 3 by using a representative example of our simulations.
We show the whitened noisy observations and the whitened
noise-free detector responses for an input SNR of ∼ 72. The
injected signal is relatively strong in the two LIGO detectors
and is contaminated by relatively larger noise in Virgo. This
is due to the specific position of the sky we selected and the
sensitivity difference in detectors.

Fig. 4 shows the estimated polarization waveforms along
with the original polarizations for the WGL and TLS algo-
rithms, using a threshold that corresponds to the best RRE.

We see that h+(t) is much better reconstructed by both
algorithms, and this is due to the larger sensitivity of the
detector network from that polarization as explained above.

The WGL algorithm restores a much larger fraction of the
“+” polarization (till t > 0.9 s) than the TLS algoritm. It
thus allows for a more complete reconstruction of the signal

3We define the sparsity level as the percentage of the number of zero
elements in the vector. A higher value means sparser result.
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Fig. 2. Reconstruction performance vs sparsity level of the estimation for
Windowed Group Lasso (WGL) algorithm (top) and the Truncated Least
Square (TLS) algorithm (bottom). The two algorithms end up making a very
different pixel selection at the best relative reconstruction error (RRE). The
WGL method selects more pixels than the TLS method.
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Fig. 3. Whitened observations in the detectors and the whitened antenna
response without noise.

at lower frequencies. This is performed at the price of a small
noise residual.

This is clearly seen in Fig. 5 that presents the associated
spectrograms obtained with the WGL and TLS algorithms,
where the low-frequency part of waveform appears to be
missing in the TLS reconstruction.

The reliable estimate of the low-frequency part of the
incoming GW polarizations may have direct implications for
the astrophysical interpretation of the observations, e.g., to test
whether the orbital motion of the source is precessing [2].

V. CONCLUSION

In this article, we proposed a new approach for the recon-
struction of the GW polarizations from the noisy observations
based on sparsity regularization. We show that promoting the
time-frequency sparsity helps reduce the reconstruction error
where the signal goes closer to or below the noise level.
We adapted the reconstruction algorithm based on “structured
sparsity” introduced in [21] to the case of additive colored
noise. This algorithm provides a promising result in our tests.
For now, we have only tested this idea with rather crude and
generic neighborhoods. We expect better results when using
neighborhood shapes motivated by astrophysical models.
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Fig. 5. Spectrograms of the estimated polarization waveform shown in
Fig. 4 with Windowed Group Lasso (WGL) algorithm (top) using a 5-pixel
neighborhood in the time direction leading to a sparsity level of 2.54%; and
with the Truncated Least Square (TLS) algorithm leading to a sparsity level
of 89.87%.
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