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†Escuela Técnica Superior de Ing. y Sist. de Telecom. (ETSIST), Universidad Politécnica de Madrid, 28031 Madrid (Spain)

Abstract—In this work, we address the problem of channel
estimation in multicarrier communications. We present a proce-
dure which employs the Type-III even DCT (DCT3e) at both the
transmitter and the receiver. By using any symmetric training
symbol we show how to estimate the channel’s impulse response
without a prior knowledge of its exact length. Theoretical results
are provided in order to guarantee the validity of the proposed
technique, whereas simulations illustrate the good behavior of
the proposed estimation algorithm.

Index Terms—MCM, Channel estimation, DCT.

I. INTRODUCTION

Many current digital communication systems make use of
multicarrier modulation (MCM) techniques. For example, or-
thogonal frequency division multiplexing (OFDM) techniques
employ the discrete Fourier transform (DFT). Discrete cosine
transforms (DCTs) have been considered as an alternative
to the DFT for MCM schemes due to their good behavior
under carrier frequency offset (CFO) [1]–[6]. In any case,
MCM systems require the estimation of the channel’s impulse
response (CIR), which is usually unknown. This estimation
is typically achieved by using a known training symbol,
and several authors have addressed channel estimation and
equalization in OFDM [7]–[10]. Similarly, other works have
provided estimation algorithms for different types of DCTs.
For instance, in [11] estimation techniques were developed for
the Type-II and Type-IV even DCTs; the proposed solutions
present good behavior, but they need extra DCTs in order
to compute the 1-tap coefficients for channel estimation.
Regarding the Type-I even DCT, some estimation algorithms
have also been presented: in [12] for symmetric channels and
in [13] for any kind of channel, symmetric or not. However,
the approach of [13] is not general in the sense that it requires
specific training symbols with enough leading and tail zeros.
In order to overcome these problems, in the present work we
analyze the use of the Type-III even DCT (DCT3e) as an
efficient solution.

The paper is organized as follows. In Section II we recall
the general formulation of the channel estimation problem, and
the DCT3e is introduced: we first provide some properties of
the DCT3e in Section II-A, the proposed estimation procedure
by using DCT3e is then presented in Section II-B, and in
Section II-C we give a simplified version of such procedure
for short filters. Section III contains some numerical examples
that illustrate the behaviour of our algorithm. Finally, we
summarize the conclusions of this work in Section IV.

II. DCT3E FOR CHANNEL ESTIMATION

The DCT3e of an N–length signal is given by the matrix
C3e shown in [14], whose entries are

ck,j = 2αj cos

(
π (2k + 1) j

2N

)
k, j = 0, . . . , N − 1,

where

αj =

{
1
2 , if j ∈ {0, N − 1};
1, otherwise.

We consider the general channel estimation problem of Fig.
1: our aim is to estimate the unknown L−length channel
impulse response, h = [h0, · · · , hL−1]T , by means of an
N−length training symbol x, which is known, and a discrete
transform T. The received signal is y = x ∗ h+ z, of length
L + N − 1, where z is a term related to the additive noise
and ∗ denotes the standard linear convolution operator. In the
receiver, the aim is to estimate h, by means of the 1-tap
coefficients di, which are known a priori because they depend
on the information in x and the transform T.

In this work, we will make use of the DCT3e as the
transform T both at the transmitter and the receiver, and a
known symbol with whole-sample (WS) symmetry:

x = [xM , · · · , x1, x0, x1, · · · , xM ]
T
.

In order to present our procedure, we first need to provide
some properties of DCT3e.

A. Convolution and MIRAS procedure

The convolution of the vector x with any vector (of length
N = 2M + 1) can be written as the product with the general
convolution matrix,

Xconv =



xM 0 · · · 0
... xM

. . .
...

x1
. . .

. . . 0

x0
. . .

. . . xM
...

. . .
. . .

...

xM
. . .

. . . x1

0 xM
. . . x0

...
. . .

. . .
...

0 · · · 0 xM



, (1)
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Fig. 1. General block diagram for channel estimation in MCM transceivers.

which has 2M + N rows and N columns. Our first aim is
to modify its rows in order to obtain an equivalent N × N
matrix that is perfectly diagonalized by the DCT3e.

For this goal, we need to define the auxiliary matrix M, the
matrix that transforms an arbitrary vector of length N+2M =
4M + 1, c = [c0, c1, ...., c4M ]T , in the following way:

M · c =[cM , .., c2M−1, c2M , c2M+1, c2M+2, ..., c3M ]T

+ [ cM , ..., c1, 0, 0,−c4M , ..,−c3M+2]
T . (2)

Notice that the final vector discards its first component, c0,
and produces a reversal (mirror symmetry) of the following
M components, adding them to the adjacent ones (repli-
cating cM ); it also produces a mirror symmetry of its last
M − 1 components, and substracts them from the previous
ones (discarding c3M+1). Therefore, it is a “mirror, replicate,
add/subtract” procedure that we call MIRAS. The explicit
expression of the N×(N + 2M) matrix M is given in Figure
2. Now we are ready to present our main theoretical result:

Proposition 1: Let us consider the convolution matrix
Xconv in (1) and the MIRAS matrix M shown in Fig. 2. Then,
there exists an N ×N matrix Xconv which is diagonalized by
the DCT3e, and that verifies

M ·Xconv · [0, z]T = Xequiv · [0, z]T

for any vector z of length N − 1.

Proof: It suffices to apply the MIRAS procedure to the rows
of Xconv : reversing its first/last rows and adding/substracting
them to the adjacent ones, the obtained matrix is M ·Xconv ,
that can be easily written as

M ·Xconv = T+K′

being T and K′, respectively, Toeplitz and Hankel-type ma-
trices of the kind:

T =



x0 x1 · · · xM 0 · · · 0

x1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

xM
. . .

. . . xM

0
...

...
. . . x1

0 · · · 0 xM · · · x1 x0



K′ =



x0 x1 · · · xM · · · 0
...

... . .
.

0 . .
. ...

xM−1 xM . .
.

. .
.

0

0 0 . .
.

. .
.
−xM

...
... . .

.
. .
. ...

0 0 · · · −xM · · · −x2


.

Theoretical results in [15] guarantee that T+K is diagonalized
by the DCT3e if K = K′ except for its first column, which is
null. We simply make this modification and define the matrix
Xequiv = T+K, which is diagonalized by the DCT3e and
shares all of its columns with M ·Xconv, so the claim holds.

This result is the basis of the proposed estimation procedure
that is explained in the following section.

B. Channel Estimation using MIRAS-DCT3e

In this section, we present our channel estimation technique
by means of the DCT3e, and the MIRAS procedure that we
have introduced in the previous section. We first choose a WS
known symbol x of length N = 2M+1. As we are interested
in the estimation of the unknown channel filter h by means
of a DCT3e block of size N , let us introduce the N -length
zero-padded version of h:

hzp = [0,hT ,0N−L−1]
T , (3)

i.e., hzp is obtained by appending 1 zero to the left and
enough zeros to the right up to length N (this extension is
performed because the channel length L is usually smaller
than the symbol length N ). The (N + 2M)-length received
vector is then

yzp = x ∗ hzp + zzp = Xconv · hzp + zzp, (4)

with zzp being the noise vector. We apply the MIRAS pro-
cedure to the received vector yzp, as explained in (2) and
depicted in Fig. 3, and we obtain the N -length vector

ỹ = M · yzp.

For the estimation procedure, we recall Proposition 1, which
ensures that

ỹ = M ·Xconv · hzp +M · zzp
= Xequiv · hzp +M · zzp,
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M =


0 01×(M−1) 2 01×(M−1) 01×2 01×(M−1) 0 01×(M−1)

0M×1 JM−1 0(M−1)×1 IM−1 0M×2 0M×(M−1) 0M×1 0M×(M−1)
02×1 02×(M−1) 02×1 02×(M−1) I2 02×(M−1) 02×1 02×(M−1)

0(M−1)×1 0(M−1) 0(M−1)×1 0(M−1) 0(M−1)×2 IM−1 0(M−1)×1 −JM−1


Fig. 2. Explicit expression of the MIRAS matrix M, with IN and JN denoting N ×N identity and counter-identity matrices, respectively.

where Xequiv is diagonalized by an N−point DCT3e:

C3e ·Xequiv ·C−13e = D.

Moreover, [15] guarantees that the diagonal entries of matrix
D (eigenvalues of Xequiv) are the DCT3e transform of the
vector xr

zp = [x0, . . . , xM , 0, . . . , 0]
T :

dk =
[
C3e · xr

zp

]
k
, k = 0, . . . , N − 1.

Therefore, we are now able to find an easy solution to the
channel estimation problem by using the DCT3e: it suffices to
denote Y := C3e · ỹ, H := C3e ·hzp, and Z := C3e ·M · zzp,
to obtain

Y = D ·H+ Z.

The coefficients dk can be computed and stored in memory
when choosing a specific training signal X; then, vector x is
easily related to them by defining X := C3e · x, so x and dj
are also known. Finally, we obtain an estimation of H,

Ĥk = Yk/dk, k = 0, ..., N − 1, (5)

and compute ĥzp = C−13e ·Ĥ, which gives a perfect estimation
of hzp = [0,hT , 0, ..., 0]T in the absence of noise.

C. Further simplification of the procedure:

Some of the above computations may be simplified, because
the last 2M − L components of yzp are null:

yzp = x∗[0,hT ,0N−L−1]
T + zzp = [0,yT ,02M−L]

T .

Hence, the MIRAS transform of yzp does not have to be
applied to its last 2M−L components, since their contribution
is 0. Moreover, there are two cases in this simplification:
• If the channel’s length L is small enough (i.e., L ≤M +

1), then the last M−1 components of yzp are null, since
2M − L ≥ M − 1. Hence, no “mirror and substract”
procedure is needed at the last components of y. In this
case, we would simply obtain

ỹ = M · yzp =[yM , .., y2M−1, .., y3M ]T

+ [yM , ..., y1, 0, 0, · · · , 0]T .

In other words, it suffices to apply a “mirror, replicate and
add” procedure (MIRA) only to the first M components
of y and then apply zero-padding to the right in order to
obtain the N -length vector ỹ.

• On the other hand, if L > M +1 there are L− (M +1)
non-null final components and we will obtain

ỹ =M · yzp = [yM , .., y2M−1, .., y3M ]T

+ [yM , ..., y1, 0, · · · , 0,−y4M+4−L, ..,−y3M+2]
T .

Hence, in this case we only need to apply the “mirror and
subtract” to the last L− (M + 1) components of yzp.

In any case, the resulting ỹ is an N -length vector. Figure
3 shows the general MIRAS procedure; but as we have
shown, these computations can be eventually simplified if the
maximum length of the channel is smaller than M + 1.

SUMMARY OF THE OPTIMIZED PROCEDURE:
1) Choose a training signal X of odd length N, such that

x = C−13e ·X is a WS signal.
2) Compute the DCT3e of the right-hand vector of x:

C3e·xr
ZP= d, and store it in memory.

3) Transmit x through the channel, obtaining the vector y
at the receiver.

4) Append zeroes to the right of y and modify it by
the MIRAS procedure (mirror the edge components,
replicate and add/substract them to/from their adjacent
ones), in order to get the vector ỹ of length N :
• If L ≤ M + 1, simply apply MIRA (“mirror,

replicate and add”) only to the first M components
of y, and then perform zero-padding to obtain an
N -length vector ỹ.

• If L > M + 1, we apply MIRA to the first
M components of y and also apply “mirror and
substract” to the L− (M + 1) final samples of y,
obtaining the N−length vector ỹ.

5) Apply the N−point DCT3e block: Y = C3e · ỹ
6) Compute Ĥk = Yk/dk by means of the 1-tap per

subcarrier coefficient obtained in Step 2.
7) Obtain ĥzp = C−13e · Ĥ by an N−point inverse DCT3e,

which is the desired estimation of the zero padded
channel filter, i.e., ĥzp = [0, ĥ, 0, ..., 0].

III. NUMERICAL RESULTS

In this section, we test the behaviour of the proposed
channel estimation scheme using one of the standardized ITU-
R M.1225 channels [16]. First of all, a length N training
signal, X, is constructed in the DCT3e domain:

Xk = 2 cos

(
π(2k + 1)M

2N

)
, k = 0, 1, . . . , N − 1.

The order N inverse DCT3e of X is performed, and the
resulting length N time-domain signal with WS symmetry, x,
is transmitted.1 After passing this signal through the channel,

1This process can be avoided simply by pre-computing x and storing it.
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Fig. 3. MIRAS procedure at the receiver to compute ỹ, followed by a DCT3e to obtain Y and division by the coefficients dk to estimate the channel.
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Fig. 4. ((a)–(c): Estimated channel’s impulse response (true value and two times the standard deviation) for SNR = 0 dB (a), SNR = 5 dB (b), and SNR =
10 dB (c). (d)–(f): Estimated channel’s frequency response (true value and range between maximum and minimum estimated values) for SNR = 0 dB (d),
SNR = 5 dB (e), and SNR = 10 dB (f). In each case, an N = 1023 length DCT3e was used and Ns = 100 simulations were performed.

characterized by an impulse response vector of length L, h,
and adding a vector of independend and identically distributed
zero-mean additive white Gaussian noise (AWGN) samples
with variance σ2

n, z, we obtain the received signal vector of
length N + L − 1, y. The MIRAS procedure described in
Section II-B (see also Fig. 3) is then applied on the vector

z, thus obtaining the length N = 2M + 1 vector ỹ. Finally,
its DCT3e of order N is computed, Y, and a division by the
pre-stored coefficients dk is performed to estimate the channel.

As mentioned above, we consider one of the channels
standardized by ITU-R for the evaluation of radio transmission
technologies for IMT 2000 [16]. More precisely, we address
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the estimation of the ITU-T M.1225 pedestrian channel B
for N = 1023. The channels were generated using Matlab’s
stdchan function using a carrier frequency fc = 2 GHz and
a sampling period Ts = 100 ns. With this sampling period, the
channel’s impulse response becomes hm = A0δm+A2δm−2+
A8δm−8+A12δm−12+A23δm−23+A37δm−37, where each of
the Ai are independent Rayleigh distributed random variables
and δ denotes Kronecker’s delta. Note that the length of the
channel’s impulse response is actually L′ = 38, but we set
L = 41 for the simulations in order to show the robustness of
the proposed approach.

Fig. 4 shows three examples of the reconstructed channel
(both in the time and frequency domains) for N = 1023
and different SNRs. Note that the channel’s reconstruction is
reasonably good for SNR = 0 dB (Figs. 4(a) and 4(d)), it
improves considerably for SNR = 5 dB (Figs. 4(b) and 4(e)),
and it becomes almost perfect for SNR = 10 dB (Figs. 4(c)
and 4(f)). Indeed, the reconstruction SNR (i.e., the ratio of
the channel’s impulse response power and the power of the
reconstruction error) is 13.83 dB, 18.85 dB and 23.84 for an
SNR = 0 dB, SNR = 5 dB and SNR = 10 dB, respectively (i.e.,
approximately 13.84 dB higher than the SNR in the channel).
Finally, note also that the impulse and frequency responses of
the channels used in the two examples are different, since they
have been generated randomly, as described before.

IV. CONCLUSIONS

In this work, we have presented a general procedure for the
estimation of any channel filter by means of the DCT3e. By
using any training symbol with whole-sample (WS) symmetry,
we show how to modify the received vector and how to take
into account the information of the training signals to estimate
the channel impulse response (CIR). The technique consists
of including a “mirror, replicate and add/substract” (MIRAS)
block processing at the receiver. Matrix formulation has been
used to meet the conditions that guarantee perfect estimation
of the CIR in the absence of noise. Our procedure allows
estimation of the CIR without prior knowledge of its exact
length, provided that it is shorter than the length of the symbol.
If the channel’s length is small enough, the procedure turns
out to be a simple “mirror, replicate and add transformation”.
In any case, the channel is estimated by means of one-tap
coefficients in the transform domain that are also computed
via the DCT3e. Simulations show that the proposed algorithm
attains very accurate channel estimates in noisy environments
for the ITU-T M.1225 pedestrian channel B. Future research
lines include developing blind and semi-blind channel estima-
tion procedures, addressing the case where neither the training
signal nor the channel are symmetric, and considering the
joint estimation of MIMO channels for DCT-based multicarrier
modulation (MCM).
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[13] M. E. Domı́nguez-Jiménez, D. Luengo, G. Sansigre-Vidal and F. Cruz-
Roldán, “A Novel Channel Estimation Scheme for Multicarrier Commu-
nications with the Type-I even Discrete Cosine Transform ,” Proceedings
of the 25th European Signal Processing Conference (EUSIPCO 2017) ,
pp. 2303–2307, Sept. 2017.

[14] S. A. Martucci, “Symmetric convolution and the discrete sine and cosine
transforms”, IEEE Transactions on Signal Processing, vol. 42, no. 5, pp.
1038-1051, May 1994.

[15] V. Sánchez, P. Garcı́a, A. M. Peinado, J. C. Segura, and A. J. Rubio,
“Diagonalizing properties of the discrete cosine transforms” IEEE
Transactions on Signal Processing, vol. 43, no. 11, pp. 2631-2641, Nov.
1995.

[16] Recommendation ITU-R M.1225, “Guidelines for Evaluation of Radio
Transmission Technologies for IMT-2000”, 1997.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1311


