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Abstract—Whilst recent advances in the field of artificial
neural networks could be applied to monitor volcanoes, its direct
application remains a challenge given the complex geodynamics
involved and the size of available datasets. However, Bayesian
Neural Networks (BNNs) are probabilistic models that could
classify and provide uncertainty estimation for transient seismic
sources, even under data scarcity conditions. This research
focuses on practical applications of BNNs to classify volcano-
seismic signals using two variational learning approaches: Bayes
by back-prop and Monte-Carlo dropout. We evaluate classifica-
tion performance on seven classes of isolated events registered
at “Volcán de Fuego”, Colima. Experimental results show an
overall improvement for Monte-Carlo dropout approximation
when compared to Bayes by backprop. Being at the intersection
of Bayesian learning and geophysics, we demonstrate that BNNs
provide uncertainty estimations when internal volcano-seismic
sources change, which undoubtedly helps to enhance current
early warning systems at volcanic observatories.

I. INTRODUCTION

Magma and gases interact in a very heterogeneous and
absorptive media, generating a wide range of seismic events.
We can identify the underlying physics of the source process
by looking at the registered seismic anomalies [1]. From a ma-
chine learning perspective, the study of volcanic eruptions can
be highly complex. During eruptions, seismic sources inside
volcanoes change, degrading classification performance across
different eruptive periods [2] [3]. This leads to constant fine-
tuning of volcano monitoring systems, which requires labelled
seismic data from new seismic anomalies. The availability of
large volcano-seismic datasets is restricted by several factors,
including, but not limited to, nature of volcanic eruptions, sig-
nal attenuation effects and geophysical interpretations needed
to label seismic data. A committee of experts visually examine
each seismic waveform and decides the type of event. This
leads to snapshots: time-framed eruptive periods in which
geophysical properties are intensely studied. However, beyond
these time-framed snapshots, other eruptive periods remain
unexplored [4].

In the context of volcanic-seismology, robustness under
adverse conditions and data scarcity becomes more imperative
than ever. Magma movements modify the energy and wave-
form of recorded signals: an overconfident or outdated model
can underestimate the danger of eruptions, not issuing alerts
on time. Uncertainty quantification provides direct knowledge
about new seismic anomalies, which extends to scientific
understanding of seismic sources variation [4]. Furthermore,

crisis eruptions require rapid responses that can affect public
safety. In this regard, two are the main contributions of this
paper. First, to evaluate classification robustness of Bayesian
Neural Networks (BNNs) for transient seismic signals at
“Volcán de Fuego” (Colima, Mexico). Second, from a signal
processing perspective, to empirically show that BNNs can
quantify uncertainty across distinct recordings of seismic data
from two different volcanoes (Mount St. Helens and Peteroa),
and another period from the same volcano.

The rest of the paper is organized as follows: section 2
discusses the related work in the field. Section 3 introduces
BNNs and the variational inference framework. Section 4
describes the datasets. Experimental setup and results are
shown in Section 5. Finally, conclusions are described Section
6.

II. RELATED WORK

Machine learning has been extensively applied to classify
volcano-seismic signals, including Support Vector Machine
(SVM) [5], Hidden Markov Model (HMM) [2] [6], Gaussian
Mixture Model (GMM) [7] and Artificial Neural Network
(ANN) [8] [9]. Bayesian Trees are the most common Bayesian
technique to forecast eruptions from unrest periods [10]. How-
ever, these methods rely on pre-processed features and super-
vised learning to classify seismic attributes from well-studied,
short-time snapshots. Recent work by [11] introduced Deep
Neural Networks (DNNs) as classifiers for volcano seismic
signals. Using a combined feature vector of Linear Prediction
Coefficients (LPC) and statistical properties, this work pro-
poses unsupervised pre-training to effectively initialize DNNs
weights and leverage data scarcity. Whilst deep learning can
help to provide accurate monitoring, its application remains a
challenge due to the aforementioned problems of data scarcity
and volcanic variability. Furthermore, research by [4] empha-
sizes the necessity to shift from deterministic to probabilistic
approaches in order to incorporate fast uncertainty estimation
and mitigate data scarcity.

Our proposed approach explores Bayesian Neural Networks
(BNNs) as probabilistic classifiers for volcano-seismic signals.
Using the LPC-based feature vector proposed by [11], we
evaluate classification performance on seven representative
volcano-seismic events from “Volcán de Fuego” (Colima,
Mexico). Further, we assess generalization capabilities of
BNNs when the volcano structure generating the seismic
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signals changes (different eruptive period, but same volcano).
Uncertainty in the predictions is estimated with data from other
two volcanoes: Peteroa and Mount St. Helens.

III. BAYESIAN NEURAL NETWORKS

Bayesian neural networks (BNNs) are defined as "artificial
neural networks in which a probability distribution is placed
over the network weights w ∼ N(0, I)" [12]. BNNs do not
compute a single estimate of the network weights, but a
probabilistic approximation p(w) over all of them. Given our
volcano-seismic dataset D = {xn, yn}, with xn the feature vec-
tor, yn the associated labels and n the total number of samples,
the likelihood is given by p(y |x,w). Class probabilities pc can
be obtained as the output of the softmax probability layer f̃ .
The posterior distribution over the network weights p(w |D)
can be estimated using Bayesian inference:

p(w |D) =
p(y |x,w) ∗ p(w)

p(y |x)
(1)

However, to evaluate p(w |D) reveals complicated as the
model evidence p(y |x) involves an intractable integral. Vari-
ational learning cast the inference approximation as an opti-
mization problem by finding a simpler distribution q(w |θ), that
minimizes the Kullback-Leibler (KL) divergence with respect
to the model posterior p(w |D). This can be done by using
backpropagation with reparametrization (Bayes by Backprop)
[13] or Monte Carlo dropout (MC-dropout) [14].

A. Variational Inference with Bayes by Backprop

The Bayes by Backprop (BBP) algorithm enables learning
a variational distribution q(w |θ) over the network weights by
optimizing the variational free-energy [13]:

L(D, θ) = KL[q(w |θ)| |p(w)] − Eq(w |θ)[log(p(D |w)] (2)

Thus, by minimizing equation 2, we can find a distribution
q(w) that minimizes the KL-divergence with respect to p(w).
Additionally, we can sample from q(w) to obtain w estima-
tions, later used to make predictions. Intuitively, this equation
can be divided into an accuracy term, the log-likelihood
p(D|w), and the KL term, or complexity term. This equation
reflect how well BNN can classify data (high accuracy) whilst
keeping complexity low. KL term will penalize and grow
larger for those BNN models whose prior assumptions are not
close to the true posterior distribution. Usual backpropagation
algorithm can be applied to provide a Bayesian update of the
network weights [13].

B. Monte Carlo Dropout

Recent work by [14] demonstrated that traditional neural
networks trained with dropout technique can perform vari-
ational learning. Dropout is an ANN regularization method
based on a random de-activation (with probability p) of
network weights [15]. During training stage, dropout leads to a
set of thinner architectures with fewer parameters, preventing
over-fitting. The optimization is given by the application of
dropout regularization technique [14]:

L(D, θ) =
1 − p
2n
| |θ | |2 −

1
n

n∑
i=1

log[p(D |w)] (3)

with p the drop-out probability. Once the network has been
trained, uncertainty can be obtained by running T forward
passes with dropout activated at test-time:

p(y = c |x) ≈
1
T

T∑
i=1

f̃ (4)

With f̃ the output from the softmax layer. MC-dropout
approximation is mathematically rooted on the stochastic
behaviour of dropout regularization technique in which
weights are randomly drop with probability p (using
a Bernoulli distribution) during test time. As a result,
an ensemble of thinner networks produce a probability
distribution q(w |θ) that can be used to approximate the true
posterior p(w |D). [14].

C. Uncertainty in volcanic seismology

Uncertainty quantification is essential given the chaotic be-
haviour of volcanoes. Magma migration, reverberations or con-
duit activation are nonlinear processes operating at different
scales. The complexity of these processes are barely captured
by traditional monitoring systems, as seismic attributes of
recorded signals are constantly changing over time. Uncer-
tainty quantification could be used to detect signal variations
and identify potential hazards. Two types of uncertainties can
be defined: Epistemic and aleatory. Epistemic uncertainty is
associated to the absence of knowledge about the natural
process and aleatory uncertainty is associated to the natural
variability of eruptions [4]. Quantifying aleatory uncertainty
can be very challenging, as it is a direct consequence of the
natural randomness of volcanic eruptions, soil composition,
thermal conditions and sensor location. However, epistemic
uncertainty can be associated to the uncertainty in BNN
weights parameters. Following [16], the epistemic uncertainty
for C classes can be computed using the entropy H(p) from
the per-class probability vector pc as:

H(p) = −
C∑
c=1

pc log pc . (5)

For both models, the probability vector p can be obtained
from the softmax probability layer (see 4). In this work, we
quantify epistemic uncertainty to explore if BNNs associate
its weights uncertainties with seismic changes across different
volcano-seismic datasets.

IV. VOLCANIC DATASETS

Three datasets have been used in this study: “Volcán de
Fuego” (Colima, Mexico), Mount St.Helens (Washington,
USA), and Peteroa (Chile). The geological properties of each
volcano have a great impact on the recorded signals, in terms
of waveform shape and frequency content. The “Volcán de
Fuego” dataset contains seven of the most representative
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Fig. 1. BNN architecture with one hidden layer and Gaussian priors
over all its weights W . For MC-dropout, the neural network is trained
with dropout cost function. Five LPC coefficients are computed over
three non overlapped segments to capture envelope and spectral
information. The input feature vector has 15-dimensions.

volcano-seismic signals that can be registered during an erup-
tion: volcano-tectonic earthquakes (VTE), long-period events
(LPE), volcanic tremor (TRE), earthquakes (REG), explosions
(EXP), lava flows (COL) and noise (NOISE). Explosions
and lava flows contain rocks and fragments that can have
devastating effects in nearby populations. In addition, VTE
(earthquakes inside volcanic edifices with high frequency
content) and LPE are particularly important, as they are often
seen as precursory of eruptions [1]. Volcanic tremors have
low frequency content and are associated with high activity
inside the volcano, but with unclear source mechanisms [2].
The average Power Spectral Density (PSD) for “Volcán de
Fuego” training dataset is depicted in Figure 2. The rest of
datasets can be summarized as:

1) The “Volcán de Fuego” is an andesitic stratovolcano
[17]. This dataset is composed of 8348 seismic signals,
collected from two monitoring stations plus one broad-
band station, during the eruptive periods of 1998, 2004,
2005 and 2006. It contains 1738 VTE, 1700 LPE, 1170
TRE, 455 REG, 1406 COL, 278 EXP, and 1601 NOISE.
An additional subset of 918 LPE events from another
eruptive period between 1998 to 2004 were used.

2) Peteroa is a basaltic volcano located in the Southern
Volcanic Zone, (Chile) with major eruptions in 2010 to
2011. The collected dataset contains 182 VTE from the
last 2011 eruption [18].

3) Mount St. Helens is a quaternary dacitic-andesite vol-
cano located in Washington, USA. This dataset was
recorded at the eruptive period of September to October
2004. It contains 947 LPE and 553 VTE events. [19].

The volcano-seismic events stored in all datasets are the
result of a careful labeling process: For each recorded seismic
signal, a geophysical interpretation is made by experts, based
on their knowledge about the volcano.

Fig. 2. Average Power Spectral Density (PSD) for each type of event at
“Volcán de Fuego”.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We note MC-dropout the neural network trained with Monte
Carlo dropout and BNN the Bayes by Backprop approach. The
datasets described in Section IV reflect the time variability of
volcano-seismic signals: they contain from explosions (with
duration of seconds), to long tremors (with duration of hours).
Raw seismic signals are very unrefined to be meaningful
as input for our neural network. Taking advantage of signal
processing algorithms, we can reduce the complexity of raw
data to an input feature vector. All signals have been sampled
at 50 Hz and band-pass filtered between 1 Hz and 25 Hz. Each
signal is segmented into three non-overlapping segments, and
5 LPC coefficients are computed over each segment in order
to capture spectral envelop information [11].

We perform data normalization and K-fold validation with
four partitions. MC-dropout and BNN are trained with (“Vol-
cán de Fuego”) dataset: (75%) training and test (25%) set.
Blind tests were performed with Mount St. Helens and Peteroa
volcano. Hyper-parameter optimization was based in grid-
search: All models were optimized with stochastic gradient
descent (SGD), learning rate of 0.01, tanh activation function
and mini-batch size set to 10, with best dropout probability
at (p = 0.2) [20]. Early stopping with patience interval of 3
epochs is used. Dropout and Bayes By Backprop has been
implemented as described in Section III. MC-dropout was
initialized with Glorot Initialization [20]. Given the size of the
dataset and in order to avoid excessive overfitting, we keep
only one hidden layer for all the models, as seen in Figure
1. Best results on the test set for best validation scores are
reported. We sampled 200 times from the posterior distribution
[14]. To evaluate model performance, we compute accuracy
(Acc), precision (PR) and recall (RC) metrics:

Acc(%) =
Number o f Correct Predictions
(Total Number o f Events)

∗ 100 (6)

Precision (PR) =
True Positives

(True Positives + False Positives)
(7)

Recall (RC) =
True Positives

(True Positives + False Negatives)
(8)
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TABLE I
BEST ACCURACY (%) RESULTS OBTAINED FOR BNN AND MC-DROPOUT

TRAINED ON “Volcán de Fuego” DATASET, WITH 5 LPC PARAMETERS,
OVER THREE NON-OVERLAPPING SEGMENTS.

# Hidden Units BNN MC-Dropout
50 77.28 81.13
250 77.47 81.78
500 77.46 81.74
700 77.54 81.58

1250 77.82 81.73
1500 77.70 81.67

For a given model, these metrics can diagnose how many
events are correctly detected and classified. Concretely, recall
evaluates how good the model can detect events from a given
class, whereas precision measures how good models classify
specific instances [21].

B. Recognition of the “Volcán de Fuego” dataset

Table 1 depicts the accuracy for best BNN and MC-dropout
models. In the context of volcano-recognition systems, all
models attain good results. We think that the reason of BNN
worse performance is related to a very strong regularization
effect by the priors over the BNN weights, and higher vari-
ances by the gradient during the learning process. In this
case, and from equation 2, the balance between generalization
and prior complexity penalizes the log-likelihood p(D|w) by
pushing up the KL divergence and decreasing performance.
Therefore, as the KL divergence measures divergence between
probability distributions, our network weight estimates are
far from the posterior. For a dataset the size of “Volcán de
Fuego”, prior assumption may locate weights into a poor local
minima, making the optimization problem harder. MC-dropout
shows an improvement over the BNN approach. This behavior
is expectable, as MC-dropout is using a family of dropout
distributions to approximate a posterior Gaussian distribution.
This translates into more refined weight distributions, with
smaller variance, that can approximate better the posterior
distribution. In addition, the multiple stochastic forward passes
with dropout activated enhances classification performance, as
remaining activated weights provides more information to the
model.

From Table 2, notice that BNN and MC-dropout have
low recall (RC) but high precision (PR) on average. Recog-
nition results are affected by the variability in the signals,
frequency attenuation and sensor location. However, MC-
dropout improved the performance in terms of precision and
recall, being more robust to signal variations. In the case of
explosions (fast, energetic, short events), both models have
very low recall, but same precision. This suggest that only very
characteristic events are detected and recognized. Additionally,
BNNs detect less REG events than MC-dropout. From a
geophysics perspective, REG events are regional earthquakes
outside the volcanic cone. As compared to VTE events, which
are earthquakes inside the volcano, this confusion is not
critical, as both events share similar geophysical properties
but differ only in arrival times [2]. The high recall but low

TABLE II
NORMALIZED PER-CLASS PRECISION (PR) AND RECALL (RC) FOR BEST

BNN AND MC-DROPOUT MODELS.

BBP MC-dropout
Seismic event PR RC PR RC

NOISE 0.97 0.96 0.96 0.97
VTE 0.73 0.86 0.83 0.90
LPE 0.75 0.79 0.76 0.82
TRE 0.70 0.63 0.70 0.66
REG 0.65 0.16 0.70 0.41
COL 0.77 0.92 0.85 0.95
EXP 0.52 0.10 0.52 0.14

Average 0.72 0.63 0.76 0.69

TABLE III
EPISTEMIC UNCERTAINTY FOR BEST MC-DROPOUT AND BNN MODELS
(250 AND 1250 HIDDEN UNITS) TESTED AGAINST OTHER VOLCANOES

BNN MC-dropout
Colima vs. Colima (LPE) 0.79 0.83

Colima vs. Peteroa 0.60 0.55
Colima vs. St.Helens 0.62 0.61

precision in lava flows (COL) and tremor (TRE) classes
suggest both models are sensitive to seismic events that occur
simultaneously in time, such as lava flows and tremors. An
interesting result is obtained for TRE class with low recall
but good precision for both models: volcanic tremor is one
of the most difficult signals to classify, and even experts
can be confuse them with background noise. The multiple
forward passes from MC-dropout increase the robustness of
classification, as the ensemble of drop-out networks capture
more information from the non-dropped weights: more hidden
units are randomly activated for the input data. Finally, notice
that magma flows (LPE) and volcanic earthquakes (VTE), are
consistently detected and recognized, attaining good precision
and recall values.

C. Blind test across volcanoes

Given the low number of volcano-seismic events at Peteroa
and St. Helens datasets, we are more interested in showing
how BNN and MC-dropout trained on “Volcán de Fuego” can
capture epistemic uncertainties for similar seismic events at
other volcanoes. This will help geophysicists to understand if
seismic signals behave differently. Our base system is selected
from the best models obtained at Table I. The epistemic
uncertainty is computed as described in Section III-C. Table
III shows the obtained results for Peteroa and St. Helens
volcanoes, and additional LPEs events from another eruptive
period recorded at “Volcán de Fuego”. First, notice that volca-
noes do not follow similar data distributions, and uncertainty
remains high for all cases. MC-dropout and BNN are able to
equally quantify uncertainty for unknown seismic sources and
similar seismic waveforms from other volcanoes. Interestingly,
when seismic waves change within the same volcano, both
models increase epistemic uncertainty, as seen from “Volcán
de Fuego”, and the LPE period. This can be explained
by the eruptive dynamics, generating more energetic LPEs
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events in the new period, confusing both models with more
energetic signals. Surprisingly, for both andesitic volcanoes
(St.Helens and “Volcán de Fuego”), epistemic uncertainty
remains roughly the same. This can be an indicative that
similar volcanoes share similar seismic attributes. Epistemic
uncertainty with the dataset of Peteroa volcano remains low,
which suggest that VTE events share common generation
mechanisms across distant volcanoes.

VI. CONCLUSIONS

When traditional machine learning models are trained with
volcano-seismic data, the uniqueness of each volcano emerges.
This work explores the practical implementation of Bayesian
neural networks as probabilistic classifiers of volcano-seismic
signals. Three datasets, “Volcán de Fuego”, Peteroa and St.
Helens are used. Variational learning methods, such as MC-
dropout and Bayes by Backprop, prove essential to fine-
tune Bayesian neural networks in the detection of magma
fluctuations (LPE) and volcanic earthquakes (VTE). However,
in the case of explosions, both models attain poor perfor-
mance. Explosions are energetic events, often accompanied
by rockfalls and earthquakes. Seismographs measure these
events together, and only very characteristic explosions are
consistently recognized by these models.

MC-dropout networks provide an overall improved accu-
racy, whereas Bayes by Backprop has stronger regularization
effect over network weights. As seen in Table II, both models
are very sensitive to signal variation. However MC-dropout
shows more robustness, with increased precision and recall
performance. Furthermore, in the case of volcano-seismic
signals, the strong prior assumption could penalize classifi-
cation performance. Epistemic uncertainty can be quantified
from the weights of the Bayesian neural network to measure
the variability of seismic signals, and provide geophysical
knowledge about the eruptions. For the studied datasets, we
empirically show that BNNs can be used as volcano-seismic
monitoring systems as they are able to extract signal informa-
tion to perform classification whilst quantifying uncertainty.
The epistemic uncertainty of both models enlighten interesting
signal properties, as volcano-seismic signals from distinct
sources could share similar attributes.
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