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Abstract—Estimating the parameters of non-uniformly sam-
pled multi-dimensional damped modes is computationally cum-
bersome, especially if the model order of the signal is not assumed
to be known a priori. In this work, we examine the possibility of
using the recently introduced wideband dictionary framework to
formulate a computationally efficient estimator that iteratively
refines the estimates of the candidate frequency and damp-
ing coefficients for each component. The proposed wideband
dictionary allows for the use of a coarse initial grid without
increasing the risk of not identifying closely spaced components,
resulting in a substantial reduction in computational complexity.
The performance of the proposed method is illustrated using
both simulated and real spectroscopy data, clearly showing the
improved performance as compared to previous techniques.

Index Terms—Sparse signal analysis, dictionary learning,
damped sinusoids, wideband dictionaries

I. INTRODUCTION

Parameter estimation of high-dimensional damped modes is
a topic of interest in a variety of fields, including spectroscopy,
geology, sonar, and radar, and has as a result attracted notable
interest in the literature (see, e.g. [1]–[7]). Common estimation
approaches include subspace-based algorithms, such as the
ones introduced in [1]–[3], and sparse framework techniques
reformulating the estimation into a convex optimization prob-
lem (see, e.g., [6], [7]). The former approaches generally
suffer from requiring detailed model knowledge, including
accurate specification of the model order, often making them
less robust to cases when such assumptions are violated. On
the other hand, many common sparse techniques will suffer
from the fact that exponentially decaying sinusoids do not
have a sparse representation in oversampled Fourier matrices,
typically necessitating an iterative zooming procedure over
multiple dimensions. In [6], this was done by expanding the
dictionary over a grid of frequency and damping candidates.
However, such an approach suffers from high computational
complexity and sub-optimal performance, typically requiring
an accurate initialization or model order information to yield
reliable results, information which is commonly not avail-
able in many of the discussed applications. To alleviate this
problem, we recently introduced a framework that iteratively
refines the estimates of the candidate frequency and damping
coefficients for each component [7], thus allowing for smaller
dictionaries, as well as for frequency and damping parameters
that are not restricted to a pre-defined grid. In [7], we further
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introduced a Kronecker structure based implementation which,
although being efficient for the case of uniformly sampled
data, does not allow for arbitrary non-uniform sampling pat-
terns.

However, non-uniform sampling is often of particular in-
terest for high-dimensional problems, where the data may
be measured in so-called indirect dimensions. This is, for
example, the case in nuclear magnetic resonance (NMR) spec-
troscopy, wherein one measures the free induction decay (FID)
resulting from pulsing a substance of interest. By varying
the pulse settings, further measurement dimensions may also
be acquired [8], [9]. For high-dimensional data, it quickly
becomes infeasible to sample the field uniformly, and recent
development has aimed at instead using random sampling
(see, e.g., [10]–[12]). For example, a recent study of 4-D
NMR measurements that would have taken about 2.5 years
to perform using regular sampling was shown to be possible
to construct in merely 90 hours using a non-uniform sampling
scheme [13]. This has also lead to further studies aiming to
optimize the selection of sampling point to achieve the best
possible performance [14], [15].

To allow for a computationally efficient estimation of such
signals, we here extend upon the sparse exponential mode
analysis (SEMA) method introduced in [7], exploiting the
recently developed concept of wideband dictionaries [16], [17]
to accelerate the estimation of the frequencies of the modes. As
wideband dictionaries allow for the use of an initially coarse
grid, without risking to miss closely spaced signal component,
the frequency regions of interest can be determined efficiently
in an initial estimation, which are then iteratively refined to
yield high-resolution estimates of the present frequency and
damping components, without assuming a priori knowledge
of the model order of the signal.

II. SIGNAL MODEL

Consider a D-dimensional signal consisting of K damped
modes, such that an observation xτ at a sampling point τn,
where τn = [ t

(1)
n t

(2)
n . . . t

(D)
n ]T , with t

(d)
n denoting

the sampling time in dimension d, may be well modeled as

xτn =

K∑
k=1

gk

D∏
d=1

ξ(f
(d)
k , β

(d)
k )t

(d)
n + ετn , (1)
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where ξ(f (d)
k , β

(d)
k ) = e2πif

(d)
k −β

(d)
k , gk denotes the complex

amplitude of mode k, and ετ is an additive noise term, here
assumed to be a white circularly symmetric Gaussian noise1.
Assuming that the signal is observed over N , in general
non-uniformly spaced, multidimensional sampling points, let
Ω = {τn , n = 1, 2, . . . , N} denote the set of samples. The
corresponding signal measurement vector, y, may then be
expressed as

y =
K∑
k=1

gkã
Ω
k + εΩ, (2)

where

ãΩ
k =

[∏D
d=1 ξ(f

(d)
k , β

(d)
k )t

(d)
1 . . .

∏D
d=1 ξ(f

(d)
k , β

(d)
k )t

(d)
N

]T
(3)

εΩ =
[
ετ1 . . . ετN

]T
, (4)

or, in matrix form, as

y = ÃΩg + εΩ, (5)

with

ÃΩ =
[
ãΩ

1 ãΩ
2 . . . ãΩ

K

]
(6)

g =
[
g1 g2 . . . gK

]T
. (7)

The problem of interest is thus to estimate the amplitudes,
frequencies, and dampings of the K modes, without assuming
knowledge of K.

III. THE WIDEBAND SEMA ESTIMATOR

As shown in [7], estimating the parameters detailing the K
modes may be formed as the solution to

minimize
x

1

2
‖y −Ax‖22 + λ ‖x‖1 , (8)

where λ > 0 is a user-determined regularization parameter
determining the sparsity of the solution, and A denotes the
dictionary matrix constructed over all considered parameter
candidates, i.e., a column of A details the evolution of a candi-
date component over the set of sampling points Ω. Clearly, the
dimensionality of A will grow rapidly with a growing number
of modes, dimensions, and parameter candidates, making the
minimization in (8) computationally cumbersome even for
small problems. For high dimensional problems, or when a
fine grid of parameters are required to avoid the risk of missing
signal components, as is typically the case in spectroscopy, the
minimisation quickly becomes infeasible.

To alleviate this problem, one may formulate efficient
algorithms in the case of uniformly sampled data, exploiting
the inherent structure in A and that the resulting columns will
be Fourier vectors [7]. As such a solution is not feasible for
non-uniformly sampled data, we here proceed to formulate
a solution exploiting wideband dictionary elements in order
to reduce the dimensionality of the problem. Such dictionary
elements are formed by integrating the contribution from all

1In spectroscopy, this is an appropriate model as the additive noise primarily
results from thermal (Johnson) noise.

Algorithm 1 The WSEMA algorithm
1: Select initial number of hypercubes P and construct

hypercubes Hp, p = 1, . . . , P .
2: repeat
3: Construct dictionary A according to (12) from the

hypercubes.
4: Solve (8) using ADMM.
5: Determine the set of active components

I = {p : |xp| > 0}.
6: Construct new hypercubes subdividing Hp, p ∈ I and

discard hypercubes Hp, p /∈ I.
7: until Desired frequency resolution is attained
8: Do NLS estimation of β

(d)
k and f

(d)
k , d = 1, . . . , D,

k = 1, . . . , K̂, according to [7], where K̂ is the estimated
number of modes.

components between adjacent (narrowband) grid points. For
example, in the one-dimensional case, for the non-damped
case, this implies that a dictionary element should be formed
by integrating the contribution from frequencies between to
adjacent grid points, say fa and fb, such that [16], [17]{

1, for fa ≤ f ≤ fb
0

F−1

−−−→ e2iπfbt − e2iπfat

2iπt
. (9)

Such a dictionary element will thus cover the full band
of frequencies, ensuring that any off-grid component is not
missed, as would typically be the case for an ordinary (nar-
rowband) dictionary (see, e.g., [18], [19]). By then reforming
the dictionary for the activated candidates, one may efficiently
zoom in on the regions of interest, refining these estimates.
As shown in [16], [17], this allows one to use dictionaries
substantially smaller than the number of measured samples,
without the risk of missing components. This in turn allows for
a dramatic reduction in the required computational complexity,
especially for higher dimensional problems. LettingHp denote
a D-dimensional hypercube in the frequency space, we define
the wideband dictionary elements as

aΩ
p =

[
ψ(τ 1,βp,Hp) . . . ψ(τN ,βp,Hp)

]T
, (10)

where

ψ(τn,β,H) =

∫
H

D∏
d=1

ξ(f (d), β(d))t
(d)
n df (1) . . . df (D). (11)

Each resulting wideband element is thus formed by integrating
a damped sinusoid over the D-dimensional hypercube, for
given values of the damping parameters β(p). The wideband
SEMA (WSEMA) estimator is then formed as follows:

Initially, the frequency space D = [0, 1)D is spanned by
Hp, p = 1, . . . , P , with ∪Pp=1Hp = D and Hp ∩ Hq = ∅, for
p 6= q. Here, as to promote computational speed, P is chosen
to be a relatively small number2. The corresponding dictionary

2As discussed in [17], P may typically be chosen as N/3D in order to
achieve a good trade-off between computational complexity and required level
of refinement steps
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Fig. 1. Magnitude of the Fourier transform of a ground truth signal containing
two modes.

A is then formed as

A =
[
aΩ

1 . . . aΩ
P

]
, (12)

with, initially, the damping parameters βp being set to zero.
Starting from a set of initial frequency estimates obtained by
solving (8) using this coarse frequency gridding, one may
then iteratively increase the resolution of the estimates by
sub-dividing the hypercubes Hp corresponding to non-zero
elements of the coefficient vector x, while discarding the
hypercubes corresponding to zero elements of x. Thus, parts
of the frequency space D containing no power is sequentially
disregarded, whereas sections of non-zero power are becoming
more finely gridded. This zooming procedure may then be
iterated until a desired frequency resolution is attained.

After forming frequency estimates using the above refine-
ment procedure, the damping coefficients are then estimated
using a non-linear least-square (NLS) step, as in [7]. This
is done by minimizing the NLS cost function for each ac-
tivated component over the corresponding frequency region
and allowed range of damping coefficients, thus also further
refining the frequency estimates. This yields an estimate
of the damping components associated with each activated
component, as well as a refined frequency estimate. To min-
imize the criterion in (8), one could, for example, use the
alternating direction method of multipliers (ADMM) (see,
e.g., [20]), which converges under quite mild assumptions
on the objective function [21]. In this work, we use such
an implementation, together with the so-called re-weighting
framework as described in [22], as to increase the sparsity
of the coefficient vector x. The resulting WSEMA algorithm3

is summarized in Algorithm 1. It should here be noted that
using an ADMM implementation, the most computationally
expensive algorithm step requires O(P 3) operations, where

3An implementation of the resulting algorithm is available on the last
author’s webpage (upon acceptance).
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Fig. 2. Non-uniform sampling scheme. Here, the value 1 indicates that a
sampling time has been selected.

P is the number of dictionary atoms. Thus, as representing a
signal consisting of N samples in general requires at least
P = N narrowband dictionary atoms, and often more to
achieve the desired resolution, the introduction of the proposed
wideband scheme significantly decreases the computational
complexity of the algorithm [16].

IV. NUMERICAL EXAMPLES

As an illustration of the proposed estimator WSEMA’s
applicability to non-uniformly sampled signals, consider a 2-D
signal consisting of two damped sinusoids of magnitudes 1 and
0.7, with frequencies f (1)

1 = 0.6, f (2)
1 = 0.6, and f (1)

2 = 0.6,
f

(2)
2 = 0.4, respectively. Also, let β(d)

k = 0.1 for k = 1, 2,
d = 1, 2, and let the signal be contaminated by circularly
symmetric white Gaussian noise of variance σ2 = 10−2. The
magnitude of the 2-D Fourier transform of the ground truth
signal is shown in Figure 1. As may be noted, its support is
a set of non-zero measure due to the dampings. From a grid
of dimension 30× 30 with uniform sampling times, we select
a total of 225 samples, i.e., 25% of the available samples,
according to the method proposed in [14], [15], yielding a non-
uniform set of samples. The sampling scheme is illustrated in
Figure 2, where the value 1 indicates that a sampling time is
selected. The Lomb-Scargle periodogram estimate of the non-
uniformly sampled signal is displayed in Figure 3. As may
be noted, the estimate contains a multitude of spurious peaks
of power resulting from the non-uniform sampling pattern.
The magnitude of the Fourier transform obtained by applying
the WSEMA estimator to the same signal samples is shown
in Figure 4. It should be noted that the WSEMA estimate
accurately represents both the location and the shape of the
modes, clearly illustrating the proposed methods applicability
to non-uniformly sampled signals.

Continuing with examining the robustness of the proposed
estimator, we consider its recovery rate for a multi-mode
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Fig. 3. The Lomb-Scargle periodogram estimate of the signal in Figure 1
when being measured at the sampling times shown in Figure 2.

signal. The simulated signal is formed of nine modes, and is
uniformly sampled over each dimension, with frequencies ran-
domly drawn on the interval [1/Nd, 1−1/Nd], for each dimen-
sion, where Nd denotes the number of samples in dimension
d. The frequencies are further restricted to be at least 1/Nd
from any other frequency. Figure 5 illustrates the recovery
rate for varying numbers of samples Nd, d = 1, 2, and initial
number of hypercubes partitioning the 2-D frequency space,
with recovery being defined as correctly identifying exactly
nine modes, each estimated mode being less than 1/2Nd
from the true frequency, for each dimension. The results are
computed using 150 Monte Carlo-simulations, where each
simulation is corrupted by an additive circularly symmetric
Gaussian white noise. The signal-to-noise ratio (SNR) of the
signals is SNR = 15 dB, where SNR = 10 log10

(
σ2
x/σ

2
e

)
,

with σ2
x being the variance of the signal and σ2

e being the
variance of the noise. As can be seen from the figure, the
proposed method quickly achieves full recovery as the number
of samples and/or dictionary elements increases.

Further, to examine the statistical performance of WSEMA,
in terms of accuracy of the parameter estimates, we consider a
simulated 2-D signal, containing two damped modes, with unit
magnitude and frequencies f (1)

1 = 0.2, f (2)
1 = 0.6, f (1)

2 = 0.7,
and f

(2)
2 = 0.3. To ensure that the frequencies are off-grid,

each frequency is randomly perturbed by a uniform noise
over the interval [0, 0.04], for each Monte Carlo simulation.
For each simulation, the damping parameters are randomly
selected on the interval [0.014, 0.022), for each mode and
dimension, and the initial phases are randomly selected on the
interval [0, 2π). The signal is uniformly sampled on the 2-D
interval [0,

√
N − 1]× [0,

√
N − 1], with a total of N = 784

samples.
Figure 6 shows the estimation performance of the WSEMA

estimate as compared to the statistically efficient (parametric)
subspace-based PUMA estimator [2], as well as the corre-
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Fig. 4. The WSEMA estimate of the signal in Figure 1 when being measured
at the sampling times shown in Figure 2.
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Fig. 5. Recovery rate for the proposed method for 2-D signals consisting of
nine modes, for varying numbers of samples and dictionary atoms.

sponding average4 Cramér-Rao lower bound (CRLB) [23].
The signal is corrupted by an additive circularly symmetric
Gaussian white noise of variance σ2

e ; the shown results are
the root mean squared errors (RMSEs), defined as

RMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(θm,k − θ̂m,k)2, (13)

where K denotes the number of modes, M the number of
Monte Carlo-simulations, whereas θm,k and θ̂m,k are the true
and the estimated parameter value, respectively. The results are
computed using M = 1000 Monte Carlo-simulations, for each
noise power. As shown in the figure, the (semi-parametric)
WSEMA estimator is able to achieve a performance similar
to the parametric PUMA estimator, although only the latter is
given oracle knowledge of the number of modes in the signal.
To avoid outliers corrupting the results, simulations during

4The shown average CRLB is computed as the average of the CRLBs
formed for the true parameters in each simulation.
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Fig. 6. The RMSE for WSEMA and PUMA as compared with the (average)
root CRB for the summed frequencies and damping parameters. The number
of samples used for each SNR is displayed in blue for WSEMA and in red
for PUMA.

which an algorithm failed to recover the correct frequencies
were removed. The number of retained samples for each
algorithm and noise level are shown in Figure 6, indicating
that WSEMA is able to recover the correct modes almost as
often as PUMA for low SNRs, whereas both methods were
found to recover the modes correctly for higher SNRs.

Finally, in order to illustrate the proposed frameworks
applicability to measured data, we consider a 2-D NMR signal
obtained from a 15N-HSQC experiment made on a Histadine
sample. Figure 7 shows the 2-D periodogram of the 50 × 50
uniformly sampled measurements of the signal. Superimposed
are the estimates obtained by applying WSEMA to a random,
non-uniform subset of size 40 × 40 of the available samples.
As can be seen, the signal consists of a number of components
of varying powers, all which may be reasonably well modeled
as damped complex sinusoids. As seen in the figure, WSEMA
is able to correctly identify these components despite having
access to only 64% of the available samples.
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uniform frequency domain for uniform exploitation of non-uniform
sampling,” J. Magn. Reson., vol. 205, pp. 286–292, 2010.
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