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Abstract—A resampling scheme is proposed for use with Se-
quential Monte Carlo (SMC)-based Probability Hypothesis Den-
sity (PHD) filters. It consists of two steps, first, regions of interest
are identified, then an evolutionary resampling is applied for each
region. Applying resampling locally corresponds to treating each
target individually, while the evolutionary resampling introduces
a memory to a group of particles, increasing the robustness of
the estimation against noise outliers. The proposed approach is
compared to the original SMC-PHD filter for tracking multiple
targets in a deterministically moving targets scenario, and a noisy
motion scenario. In both cases, the proposed approach provides
more accurate estimates.

I. INTRODUCTION

Driven by the wide range of applications in both military
and civilian domains, Multi-Target Tracking (MTT) has re-
ceived a growing interest over the last decades [1], [2]. Unlike
the Single Target Tracking (STT), where a target’s state is
estimated, in an MTT scenario, one aims to simultaneously
estimate the number of targets and their states, i.e., tracks.
Similar to the STT problem, the MTT is commonly tackled
through a sequential Bayesian framework. However, the MTT
introduces new challenges to the Bayesian framework. First,
the number of targets and measurements can be time-varying.
Second, in most conventional MTT algorithms, an explicit as-
sociation between measurements and targets is needed, which
contributes a significant portion to the total computational
complexity due to its combinatorial nature [3]-[5]. The Multi-
ple Hypothesis Tracking (MHT) addresses the data association
problem by propagating all possible associations in time [3]-
[5]. Alternatively, the Joint Probability Data Association Filter
(JPDAF) [1], [6] and the Probabilistic MHT (PMHT) [7]
weight the observations by their association probabilities.

A different approach to tackle the MTT problem which avoids
an explicit association between measurements and targets was
developed using the Random Finite Set (RFS) theory [8]. An
RFS approach expresses the collection of targets as a set-
valued state and the collection of measurements as a set-valued
observation, allowing the problem of estimating a varying
number of targets using a varying number of measurements to
be addressed within a full-Bayesian estimation framework [8]-
[10]. This approach is compared to traditional MTT algorithms
in [11]. An RFS-based fully Bayesian filter was investigated
in [12] for tracking two acoustic sources. However, due to the
computational complexity of the fully Bayesian MTT filter, it
is not applicable for a large number of targets and one has to
rely on approximations of the fully Bayesian filter by discard-
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ing the higher order moments of the RFS. This is done in the
Probability Hypothesis Density (PHD) filter [8], [13], [14],
where the first-order moment, called the intensity function
of the RFS or PHD, is recursively propagated, in a similar
fashion to the constant-gain Kalman filter. Nevertheless, the
Bayesian recursion of the PHD still involves multiple integrals,
precluding closed-form solutions in general. This motivated
implementing PHD filters via Sequential Monte Carlo (SMC)
approaches [15], [16]. SMC-based estimation methods are
common tools for nonlinear system identification [17]-[19]
and are often referred to as particle filtering.

In this paper, for the SMC implementation in [16], we
propose to use an alternative resampling approach, that is
based on evolutionary strategies [20], [21], and acts locally
for an estimated number of regions. The proposed resampling
step aims at increasing the robustness against outliers and to
provide better estimates, especially for a lower number of
particles. This is beneficial in cases where the evaluation of a
single particle is already computationally expensive as in the
case of complicated state transition and measurement models.

II. OVERVIEW

In this section, a brief overview of the original filter in [16]
is given. However, since this overview serves as a summary of
[16], numerous details related to the PHD filters and particle
filters are skipped. Interested readers are referred to [8]-[10],
[13], [14] for a detailed treatment of the PHD filter and to
[17]-[19] for a comprehensive discussion on particle filtering.

A. The Random Finite Set Model

The varying number of targets and measurements combined
with the lack of association/track identity, motivates the use
of sets to represent the multi-target state at time instant k

X =A{xr1, . Trnw } € F(E), (L

where N (k) is the number of targets at time instant k,
Ty, is a single-target state vector, i.e., tracks and velocities
in our simulations, defined on the single-target state space
E, and F(E;) denotes all finite subsets of Es. The M (k)
measurement Vectors 2 1, ..., 2k, M (k)» 1.€., Observed positions
in our simulations, defined on the single-target measurement
space E,, are represented by the RFS

Zy ={2k1s 0 Zmi) ) € F(Em), (2

where F(F,,) denotes all finite subsets of E,,.
In order to model the uncertainty in the multi-target states

647



2018 26th European Signal Processing Conference (EUSIPCO)

and measurements, we use the RFSs =; and X defined as
finite subsets of F and F,,, respectively. The evolution of
the multi-target states is modeled by

Er = Sk(Xp—1) U Hp(Xp-1), 3)

where X1 denotes a realization of Zj_1, Si(Xk—_1) is the
RFS of targets which survived from time instant £k — 1 to k
and Hy(Xj_1) is the RFS of the new targets at time instant
k, modeled as

Hp(Xk—1) = Bp(Xp—1) UTy, “)

in which, Bj(Xj;_1) is the RFS of targets spawned from
X1, e.g., target splitting, while I'; denotes the RFS of
new targets appearing spontaneously. The multi-target mea-
surements are modeled by

Y = O(Xy) U Cp(Xy), ®)

where ©(X},) denotes the RFS of measurements generated
by X whereas Ci(X}) denotes the false alarms and clutter
measurements. After defining appropriate probability measures
and densities, one arrives at the optimal multi-target Bayes
filter equations [16]

)= frpe—1 (Xl X)Pr—1jp—1(X|Zr—1)As(dX)

k(2| Xk )Py —1 (Xke| Z1:-1)

J 96 (Zk| X) ko1 (X[ Z1—1) X (dX) 7(6)
in which A; is a dominating measure on the Borel sub-
sets of F(Es) (see [8]), frjk—1(-|Xx—1) denotes the multi-
target transition density, which encapsulates all information
on targets evolution, such as a target survival, a new target
birth and the propagation of remaining targets. gx(-|X%) is
the multi-target likelihood, that accounts for measurement
noise, detection probability and clutter-generated measure-
ments. pyp—1(Xx|Z1:1—1) is the multi-target predictive den-
sity. Finally, py|(Xx|Z1:x) denotes the multi-target posterior
density. However, constructing a multi-target transition density
and likelihood requires advanced mathematical tools, which
are usually not familiar to engineers. This encourages the use
of Finite Set Statistics (FISST) which is engineering-friendly,
in the sense of representing these tools in a form which is
familiar and accessible for engineers [9], and allows for a sys-
tematic construction of multi-target states and measurements
descriptions from (3) and (5) [8]-[10].
B. The PHD Filter

As mentioned earlier, propagating the entire posterior can
be computationally taxing. Therefore, the PHD filter propa-
gates the intensity function Dz, instead. The function Dz
is defined on E, and satisfies [, Dz(z)dz = E[|ZN A
[10], which is the expected number of targets in a given
measurable region A C FE, [8], [16]. This propagation is
described by two operators, the prediction operator ®,;,_; and
the update operator Wy. Despite the apparent computational
advantage of propagating Dy, (x), which is the intensity
function associated with the multi-target posterior py; and

Prjk—1( Xkl 2111

ik (Xk| Z1:1) =
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takes on values from Ej, the propagation operators still involve
a number of integrals, excluding a closed-form solution in
general (a closed form solution may be obtained by forcing
further assumptions as it is done in the Gaussian Mixture
PHD filter [22]). This encourages the use of an SMC-based
approximation to implement the PHD filter [16].

C. The SMC Implementation of the PHD Filter

Let aj_1 denote an approximation of the intensity func-
tion Dy _ 1|k 1 using Lj_q particles and their weights

{ac,C LW 1}L’“ ! such that [16]
Ly
ap—1(xrp_1) Zwk 10, W (xp—1), @)

where () denotes the delta-Dirac mass located at x.

Let ¢pr—1(%k, Tr—1) denote the intensity function which
accounts for target survival and propagation and for targets
spawning given their previous state xj_1, while () de-
scribes the spontaneous birth RFS intensity function. By fol-
lowing the importance sampling principle, which allows sam-
ples to be drawn from the proposal densities Qk('@;ﬁl, Zy)
and py(+| Zx), which satisfy certain conditions [17]-[19], one
arrives at the following approximation of Dy_1

Lg_1+Jg

Z wk\)k 100 (@), (8)

(Prjp—10k—1) (k)

20 (e 1, Zn), i=1,.., Ly
b k12, i=Lg1+1,. L1+ Jk
brpp—r (@ @ (z) .
Eripd Bk 1) =1,..., L.
wl) = L@z P '
MEZLT) ) .
t=Ly1+1,..,Lp_1+ Jg.

JkPK (ES) |Z)’
Note that the number of particles grew from Ly_1 to Ly_1+Jg
by adding J; new particles from the birth process. Moreover,
let ki (+) denote the clutter RFS intensity function, v(xy) is the
probability of not detecting the target x;, whereas vy, ()
describes the likelihood of a target xj, we arrive at

Lot
(Whage)(m) = 3 w/@%}g‘) (zk), )
i=1
w = @)+ 3 (@) | (10)
k ’ 2€7), ki(z) + Cr(z) k|k—1°
Li_1+Jk
Z wk?z k wk:‘k) 1 (1])

However, a continuous increment of the number of particles
will render the scheme computationally inefficient. This is
addressed in [16] by varying the number of particles ac-
cording to the estimated mass for the number of targets
]\A/k‘ E = ZZL:"{ 1+ w,(el)k, assigning p particles for each target
according to

Ly = |pNyi ) (12)
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where |-| denotes the floor function. The new number of
particles is used in the resampling step, by redistributing the
total weights mass Nkl r over L resampled particles equally,
i.e., all particles will be equally weighted by ]\Afk‘ &/ L. This
is done by discarding low-weighted particles while replicating
particles with sufficiently large weights [17].

III. THE EVOLUTIONARY RESAMPLING

The resampling step in the above SMC implementation is
similar to what is done in the conventional Sequential Im-
portance Sampling/Resampling Particle Filter (SIR-PF) [17]-
[19], [23]. However, the conventional resampling scheme
suffers from the diversity decay effect due to the replicat-
ing/discarding process. Moreover, since all particles are resam-
pled, particle memory is reset at each iteration. We propose
a modified resampling scheme, where the intensity function
is approximated using a Gaussian Mixture Model (GMM),
each component of which is resampled individually using
evolutionary strategies [20], [21]. The number of components
in the GMM corresponds to the number of what we call
Regions of Interest (ROI) in the following.

A. The Regions of Interest ldentification

ROIs are regions that probably enclose a single target. This
loose definition implies the potential of having more ROIs
than actual targets, which is allowed, since some regions will
enclose clutter measurements and thus, the identification of
ROIs is not unique. To identify ROIs, we first initialize the
number of ROIs with R = Ly_1 + Ji, so that each ROI is
represented by a single particle. Afterwards, starting randomly
at region j, characterized by the set A; of all particles in the
region, the nearest particle to the region center

Zi:wg)e/\j wj(;)ml(;)

: (13)
Zi:my)GAj wk

w.rt. the Euclidean metric, is included into the set A;, and
is consequently removed from other regions. Afterwards, the
region center is updated and the process is repeated until one
of the following conditions is satisfied:

o The sum of the particles weights for the j-th ROI is
ngfll = Zi:ml(:)GAj w,(;) > 1, this implies that a single
region can not contain more than a single target.

o The Euclidean distance H(wl(;) — H;)l|2 between the
nearest particle and the region center is larger than a
predefined limit .

This procedure is then iterated for non-empty regions. A
simple outlier rejection is performed to remove insignificant
regions, i.e., a region with one particle and a weight below a
threshold (chosen to be 1073 in this paper). The weights of
the remaining L., particles have to be renormalized to keep

the weights mass EiL:“T w,(:) = Nkl & fixed.

B. The Local Resampling

After identifying the ROIs, an evolutionary resampling step
for each ROI is applied. Assuming that ROI j is under
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consideration, the number of particles needed in this region is
calculated ng) =|p Zz‘:w,i“eAj w,(;)J = LpNé{lzJ Afterwards,
the set A; is divided into an elitist subset WV, ;, and a non-elitist
subset M
(2) Wj ks if w,l(gl) > W,
T, € ’ B

(@

14
if  w, (14)

Mj,k;, < Wth,

where wy, = 1/|A]| Zz‘:w;i)eAj w,(f) [21] is a weight threshold,
in which |A;| denotes the number of particles in A;. While
the non-elitist subset M ;. is always discarded, three cases
are distinguished for the elitist subset W j:

1) The number of elitist particles |WW; x| is larger than the
needed number of particles in the ROI [W; x| > LY. In
this case, only the L,(CJ ) elitist particles with the highest
weights are kept, all other particles are discarded.

2) The number of elitist particles is smaller than the needed
number of particles in the ROI |W, | < L;j ) In this
case, Lfg Jmew ng ) |[W; k| new particles are needed.
In order to generate these, elitist particles are used to
construct a Gaussian density N (Zy, j, Q). ;) with a mean
vector and a covariance matrix obtained according to

Ty = — (15)

E:ﬁmg)ewq¢1”$)ﬁzg)_‘EFJ)(wg)_‘EEJ)T
Qk,j = - o) .
Zi;mfj)ew_m Wy,

(16)
The L,(j )Y hew particles are then drawn from
N (Zk j, Q) ;) and, since N (Zy j, Q) ;) is an approxi-
mation of the target intensity function, the new particles
are assigned equal weights N lgf; / L,(f )new
3) The number of elitist particles |W; | is equal to the
needed number of particles in the cluster [W; ;| = L}Cj ),
Then, the elitist particles are kept unchanged.

In order to keep the estimated number of targets within
the region fixed, weights are renormalized such that
Zi:wfj)eAj w,(;) = Néf}i The GMM approximation of the
intensity function accounts for the multi-modality of the
multi-target intensity function, whereas resampling regions
individually corresponds to an individual treatment of targets.
The evolutionary resampling scheme [21] will introduce a
memory to the elitist particles, due to the fact that it does not
resample all particles, thereby increasing robustness against
outliers. In addition, drawing new particles from a continuous
density, such as a Gaussian, increases the particle diversity
compared to the original implementation in [16], counteracting
the diversity decay problem. Finally, we will refer to the
SMC-PHD implementation using the proposed resampling
scheme as the Evolutionary Resampling PHD (ER-PHD) in
the following.

649



2018 26th European Signal Processing Conference (EUSIPCO)

Filter Deterministic motion Noisy motion
Ep Eloc P Ecard,p Ep Eloc,p Ecard,p
SMC-PHD | 61 42 19 76 36 40
ER-PHD 54 38 16 66 41 25

TABLE I: OSPA values of SMC-PHD and ER-PHD estimates.

IV. EXPERIMENTAL RESULTS

In this section, the proposed resampling scheme is evaluated
and compared to the original approach in [16] using a non-
linear multi-target tracking scenario [16] in the 2D physical

space. In the followm? simulations, the state vector of the
() (t) t)

target t, x;, (t), ,(Ct), AQ,(:)] follows the model
1 1 0 0 0
0 cos(AH,(f)) 0 —sin(AG,(f)) 0
) = o 0 1 1 0 2", + uy,
0 sin(A@l(:)) 0 cos(AH,(f)) 0
0 0 0 0 1

(a7
where x,(ﬁ),y,(c) denote the coordinates of target ¢, xgc ,y,?)
t)

denote the velocities on the corresponding axis and A6,
is the change in direction between two successive Velocuy
vectors. The process noise is denotes by u, ~ N (0541, Q,,),
where @, is a zero matrix or a diagonal matrix depending on
the scenario. Tracks were allowed to be generated within the
range (xy,yr) € [—2000,2000] x [—2000,2000]. The single-
target state vector x kt is observed via bearing bz) and range
7“,(:) measurements, captured in the vector z(t) [b(t) (t)]T.
Assuming that the sensor is centered at the origin of the
coordinate system, the measurements are modeled by

(t)
b\ = arctan ( >+vb K, and ri" = H[Ig)vy/(:)]TH o,
2

(t)
(18)
where vy, = [vp , U k)T ~ N (021, diag ([180, 10} ))

The clutter noise is uniformly distributed with an average
rate of 10 points per scan, i.e., a Poisson point process with
a uniform intensity function.

The PHD filters are designed to have a constant survival
probability ez, ,—1(-) = 0.99, [16]. For simplicity, no spawning
is considered in the simulations. The spontaneous birth process
is modeled by a Poisson process, with a rate of birth per
scan 0.1 and a weighted Gaussian mixture intensity function
consisting of 4 components. The mean vectors of the Gaussian
components match the true birth, i.e., initialization, positions
of the generated targets and the covariance matrices of the mix-
ture components are set to Q 5 = diag ([50 50, 50, 50, %])
Filters are initiated by drawing samples from the density
N(Zo, Q,), where Tz = [0.1,0,0.10,0.01]T and Q, =
diag ([100, 10,100, 100, 1]) . The importance densities ¢, and
pr match the state transition and birth densities described
above, respectively. Furthermore, details on the detection
density and likelihood calculations can be found in [16].
Evaluating the performance of an MTT scheme is not intuitive
and many measures can be used [24]-[26]. In this paper,
the Optimal Subpattern Assignment (OSPA) metric [27] is
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employed, which accounts for over- or underestimating the
number of targets and the quality of estimation per target.
The metric includes three components €joc p, €card,p and €p,
which describe the localization error of the detected targets,
the cardinality error and the total error combining the previous
two measures, respectively [27]. In [27], the metric has two
parameters to be defined, i.e., ¢ and p. Here, we use ¢ = 100
and p = 1. In the ER-PHD, dp,x = 75 is used. Finally for
both filters, the number of particles per target is p = 500.

A. The Deterministic Motion Scenario

In this simulation, deterministic tracks of 10 targets are gen-
erated using (17) with u;, = 0. The PHD filters’ hypothesized
state transition model matches (17) with

Q, = diag ([6.25,25,6.25,25,3 - 107%]).. (19)

The two filters, the original SMC-PHD [16] and the ER-PHD,
are compared w.r.t. their performance in tracking the different
targets. The simulation is realized 20 times. The average, over
time steps and realizations, OSPA performance metric €, and
its two components €joc,, and €carq,p, are given in Table 1.
As Table I shows, the ER-PHD yields a slightly lower €,
and this advantage is maintained for both €jc;, and €car,p.
However, to provide an intuition of what these values mean,
the target estimates produced by the two filters, the SMC-
PHD and the ER-PHD, are depicted in Figure 1 and 2,
respectively. As the estimates show, the ER-PHD provides
more accurate estimates. This is most pronounced in the case
where a target is almost not detected at all with the SMC-PHD,
e.g., the tracks highlighted in red, while the ER-PHD produces
a relatively accurate estimate of the respective target. For p
below 500, the ER-PHD also starts to miss targets, while the
performance difference relative to the SMC-PHD, evaluated
by the OSPA metric, even increases. Finally, as the number of
particles increases, the performance difference decreases and
at p = 1000 becomes insignificant

B. The Noisy Motion Scenario

In this experiment, the target-tracks are generated according
to the model (17) with the covariance matrix @, in (19).
This will introduce the probability of a target motion outlier,
making the task harder since the targets move abruptly and
can change their turning rate. The simulations are repeated
a 100 times, meaning that 100 different tracks are generated
and tracked. Similar to the previous experiment, the different
OSPA values are averaged over the 100 realizations and time
steps. The average values are provided in Table I, where
the ER-PHD has a clear advantage in estimating the number
of targets, which is due to the introduction of memory to
the elitist group of the particles, increasing the robustness
against outliers in the motion model. Nevertheless, the memory
introduced by this resampling scheme is short enough for the
filter to adapt to abrupt changes in the number of targets, as
seen in the simulations. Finally, the SMC-PHD has a lower
localization error €., which can be explained as follows:
the SMC-PHD underestimates the number of targets severely
compared to the ER-PHD, indicating that the SMC-PHD
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Fig. 1: SMC-PHD tracks estimates.

detects the most dominant or ’clear’ targets in the set. This
then results in a lower localization error on average than
localizing the full set including ’noisy’ targets. This effect did
not show up in the deterministic motion model scenario, where
the difference of cardinality error between the two targets was
not as large as it is in the noisy motion scenario.

V. CONCLUSION

In this paper, a resampling scheme is proposed to be used
in an SMC-based implementation of PHD filters for MTT. In
this scheme, ROIs are first identified, each ROI is then resam-
pled using an evolutionary scheme. The individual treatment
of the ROIs corresponds to resampling targets individually,
while the evolutionary resampling increases robustness against
outliers by introducing an extra memory to the elitist particles.
This scheme was compared to the original SMC-PHD filter
proposed in [16] in two scenarios, where the ER-PHD out-
performed the original filter, especially for a low number of
particles, which can be beneficial in cases where the evaluation
of a single particle is expensive, e.g., for complicated state
transition models using non-elementary functions.
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