
Time Modulated Array Controlled by Periodic
Pulsed Signals

Roberto Maneiro-Catoira, Julio Brégains, José A. Garcı́a-Naya, and Luis Castedo
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Abstract—During the last years, time-modulated array (TMA)
architectures have been considering different switching network
designs, focusing primarily on the radiation pattern synthesis.
Unfortunately, switching networks exhibit a noticeable energy
leakage due to the time the array elements remain off, yielding
a strong degradation of the signal-to-noise ratio. To improve the
corresponding network efficiency, configurations with multiple
switches per antenna element, or even with single-pole multiple-
throw switches, have been proposed. However, network switching
efficiency improvements sacrifice beamforming flexibility. To
overcome such a limitation, recent works have proposed to
replace the switches with variable-gain amplifiers controlled by
time-variant pulses based exclusively on sinusoids. In this work,
we describe a TMA architecture based on ultra-wide band analog
multipliers which is suitable for all kind of periodic pulses.

Index Terms—Antenna arrays, time-modulated arrays, beam-
forming.

I. INTRODUCTION

Early time-modulated array (TMA) schemes considered the
simplest possible architecture, consisting of one single-pole
single-throw (SPST) switch per antenna element plus a sum-
ming circuit, whereas the TMA design focused exclusively on
the radiation pattern synthesis [1]. However, key aspects such
as the energy inefficiency caused by the waste of power when
the switches are disconnected, or the reduction of the average
signal-to-noise ratio (SNR) at the receiver, were not considered
until TMAs were proposed for multiple beamforming in com-
munications [2]. In such circumstances, single-pole multiple-
throw (SPMT) switches have been explored to overcome the
enormous gain degradation per beam of the radiation pattern.
Nevertheless, the use of a single radio frequency (RF) switch
for controlling multiple antenna elements implies a TMA
design with complementary switch-on time durations, leading
to a less flexible beamforming, which is impractical for more
than two harmonic beams. TMA schemes using single-pole
dual-throw (SPDT) switches have been proposed in [3] to
improve the TMA beamforming efficiency. Such techniques
are based on preprocessing the TMA pulses in a way that
resembles single sideband (SSB) modulation, hence the name
SSB TMA to refer to such techniques. SSB TMAs, however,
are limited to beamforming the first positive harmonic. In
order to circumvent those limitations, other solutions have
been proposed in the literature, which led to, for example, the
design of multibeam TMAs based on the use of alternative
periodic pulsed signals such as sum of weighted cosines
(SWC) [4], or digitally preprocessed rectangular pulses [5].

Fig. 1. Proposed TMA architecture with analog multipliers to perform the
periodic pulse modulation.

Time modulation with such alternative periodic pulsed signals
is implemented with variable-gain amplifiers (VGAs) rather
than switches, making possible a more flexible multiple beam-
forming. Inspired in the latter schemes, we propose in this
work a more generic concept: a TMA structure that can be
controlled by any kind of periodic pulsed signal, employing
analog multipliers to perform the periodic pulse modulation.
We believe that this is the first work that proposes such a TMA
structure supporting multiple beamforming at the fundamental
and harmonic frequencies.

II. MATHEMATICAL FUNDAMENTALS

Let us consider a linear array with N isotropic ele-
ments with unitary complex static excitations In = 1,
n ∈ {0, 1, . . . , N − 1}. As shown in Fig. 1, each element
excitation is modulated by a pair of periodic pulsed signals:
gn(t) and its Hilbert Transform (HT) ĝn(t), both with the
fundamental period T0. Such periodic signals are generated in
the digital domain, and then converted to the continuous-time
domain through the corresponding digital-to-analog converters
(DACs). Fig. 1 also shows how the periodic pulse modulation
is carried out by analog multipliers. Since gn(t) ∈ R, it can
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be represented by the following trigonometric Fourier series:

gn(t) = An0 + 2
∞∑
q=1

Anqcos(qωot+ Φnq), (1)

being ω0 = 2π/T0 and anq = Anqe
jΦnq ∈ C the exponential

Fourier series coefficients of gn(t). As the gn(t) are real-
valued, such coefficients satisfy an(−q) = a∗nq and hence
an0 = An0 ∈ R, which is its direct current (DC) component.
Notice that

ĝn(t) = 2
∞∑
q=1

Anqsin(qωot+ Φnq) (2)

because the HT acts as a π/2 phase shifter of a given signal
and setting to zero its DC component.

Let us next consider that a narrowband passband signal
u(t)ejωct impinges on the array. The analytical representation
of the incoming signal is given by u(t)ejωct, where u(t) is its
complex-valued baseband equivalent. According to Fig. 1, the
signal at the array output1 will be

s(t, θ) = u(t)ejωct
N−1∑
n=0

(gn(t) + jĝn(t))ejkzn cos θ, (3)

where zn represents the n-th array element position on the z
axis, θ is the angle with respect to such a main axis, and k is
the wavenumber. By considering the Fourier Transforms (FTs)
of Eq. (1) and that of its HT, we have that the FT of s(t, θ)
is

S(ω, θ) =
U(ω − ωc)

2π
∗
N−1∑
n=0

[
An0δ(ω)+

+ 2
∞∑
q=1

Anqδ(ω − qωo)ejΦnq

]
ejkzn cos θ, (4)

being ∗ the convolution operator, δ(ω) the unit impulse in the
frequency domain, and U(ω) the FT of u(t). It is important
to note that the negative spectral lines are canceled out in the
previous calculation. Turning back to the time domain, we
arrive at

s(t, θ) = 2u(t)
[
Fωc

(θ)ejωct +
∞∑
q=1

Fωc+qω0
(θ)ej(ωc+qω0)t

]
,

(5)

where

Fωc
(θ) =

N−1∑
n=0

An0ejkzn cos θ, and

F(ωc+qω0)(θ) =
N−1∑
n=0

2Anqe
jΦnqejkzn cos θ (6)

are the spatial array factors at frequencies ωc and ωc + qω0,
respectively. Notice that the array factor at the fundamental

1Notice that ifB is the signal bandwidth, then ωo > B [2] and the sampling
frequency of the DACs, ωs, must satisfy ωs > 2Lω0, being L the order of
the highest harmonic to be exploited.

frequency ωc depends on the real-valued numbers An0 and
thus has no scanning ability, whereas the array factors at
the harmonic frequencies ωc + qω0 (q ≥ 1) depend on the
complex-valued coefficients AnqejΦnq and therefore can be
satisfactorily used to perform adaptive beamforming.
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Fig. 2. The TMA in Fig. 1 can be used to synthesize three independently
steerable radiation patterns (Dolph-Chebyshev with −30 and −25 dB of
SLL, and a normalized Gaussian pattern with a standard deviation of 2/3,
respectively) over three different harmonics (q = {1, 2, 3}), and employing
amplitude tapering supported by pure sinusoids.

III. BEAMFORMING CONFIGURATIONS

In the following subsections we illustrate how the proposed
TMA architecture shown in Fig. 1 is capable of support-
ing multiple beamforming at the fundamental and harmonic
frequencies. We show that this is possible by employing
suitable periodic pulsed signals and using amplitude and/or
time tapering.

A. Pure Sinusoids (Amplitude Tapering)

By considering Eq. (1) with a finite sum of L pure sinusoids,
and setting An0 = 0, we have

gn(t) = 2
L∑
q=1

Anqcos(qωot+ Φnq). (7)

Under these premises, we can carry out the beamforming over
ωc + qω0 (q 6= 0) by controlling the amplitudes Anq and the
phases Φnq in the array factor Fωc+qω0(θ) given by Eq. (6).
By considering Φnq = −qω0δnq , being δnq a time delay,
it is possible to easily implement L beamforming radiation
patterns by controlling the amplitude tapering Anq and the
cosine time-delays δnq . Recall that the harmonic radiation
patterns can be totally independent in amplitude and phase.
As a matter of fact, we have considered the example in Fig. 2,
which corresponds to an array of N = 20 elements exploiting
L = 3 harmonics. {An1}, {An2}, and {An3} are selected
as the normalized amplitude excitations corresponding to a
Dolph-Chebyshev distribution with −30 dB of SLL, a Dolph-
Chebyshev distribution with −25 dB of SLL, and a Gaussian
pattern with a standard deviation of 2/3, respectively. For
each q, δnq are progressive phases so that the corresponding
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Fig. 3. Radiation pattern [4, Fig. 10] synthesized by means of an architecture
based on VGAs known as Enhanced TMA. The application of identical 2-term
(K = 1) SWC pulses with an0 = 1/3, an1 = 2/3, and normalized time
durations ξn capable of synthesizing Dolph-Chebyshev pencil beam patterns
with SLL = −23 dB, generates the beams in the figure at q = 0, q = 1 and
q = −1, respectively. In this work, thanks to the structure in Fig. 1, where
both gn(t) and ĝn(t) are applied to the antenna, we improve the beamforming
efficiency by removing the specular beam at q = −1 (symmetric to the one
for q = 1 with respect to θ = 90◦).

beams point to 90◦, 116◦, and 140◦, respectively. Notice
also that the proposed architecture allows for improving the
antenna efficiency when compared to [6] because it removes
the specular patterns corresponding to the negative harmonics.

B. SWC Pulses (Amplitude & Time Tapering)

The so-called Enhanced TMAs [4] based on SWC pulses
can perform both amplitude and time control of the array
excitations. According to this technique, each periodic pulsed
signal, gn(t), is obtained after the following two steps:

1) We first construct the periodic (T0) extension of a basic
(aperiodic) pulse given by an SWC over a finite duration
τn ≤ T0, i.e.,

bn(t) =
K∑
k=0

ank cos(2πkt/τn) rect(t/τn), (8)

where rect(t/τn) = 1 for t ∈ (−τn/2, τn/2), and
0 otherwise; and ank are real-valued constants with
k ∈ {0, 1, . . . ,K} satisfying the normalization condition∑K
k=0 ank = 1. The functions given in Eq. (8) have

been used to design different windowing functions with
excellent sidelobe behavior [7]. The Fourier coefficients
of the periodic pulse train with bn(t) as in Eq. (8) are [4]

Bnq =
ξ2
nq

π
sin(πξnq)

K∑
k=0

(−1)kank
ξ2
nq

2 − k2
, (9)

being ξn = τn/T0 the normalized pulse durations.
2) We next obtain gn(t) by time-shifting δn the pre-

vious periodic pulsed signal. The resulting periodic
signal will have Fourier series coefficients given by

Bnqe
−jq2π/T0δn and, therefore, it is immediate that Anq

and Φnq in Eq. (1) will satisfy

Anq =
ξ2
nq

π
sin(πξnq)

K∑
k=0

(−1)kakn
ξ2
nq

2 − k2
, and

Φnq = −qω0δn. (10)

In view of Eq. (10), the designer has two degrees of freedom
(time durations ξn and cosine weights ank) in the expression
of Anq . Notice that Φn1 = −ω0δn are the phases of the
excitations of the first-order harmonic. Therefore, the phases
for a given higher-order harmonic q will be Φnq = qΦn1,
hence showing proportional phases that may limit the beam-
forming design when the number of harmonics increases. In
order to synthesize harmonic beams with independent phases,
the periodic convolution of SWC pulse trains with auxiliary
pure cosine signals is proposed in [4].

Fig. 3 illustrates how the proposed architecture improves
the beamforming efficiency exhibited by an Enhanced TMA
synthesizing the same radiation pattern but removing the
specular (q = −1) beam.

C. Nyquist Pulses (Accurate Harmonic Windowing)

Focusing again on TMA harmonic beamforming, it is well-
known that the frequency behavior of conventional rectangular
pulses, implemented by RF switches, is not the best one to
efficiently distribute the spectral energy among the different
harmonic patterns to be exploited [4], especially when more
than a single harmonic radiation pattern is to be synthesized.
A minimum main-lobe width and a modest SLL, together with
a slow asymptotic side-lobe decay—quantitatively reflected
in Anq = τn/T0sinc(qπτn/T0), see Fig. 4 (a)—are charac-
teristics of the rectangular pulse frequency response which
will restrict the TMA efficiency together with the SNR at the
receiver.

The versatility of the proposed structure shown in Fig. 1
allows for considering periodic Nyquist pulsed signals. No-
tice that such periodic pulsed signals are the most suitable
(and long-established) alternative to the non-causal ideal sinc
function with an infinite time response.

Let us consider the well-known Nyquist pulse [8]

r(t) = sinc(2πt/τn)cos
2ρnπt/τn

1− (4ρnt/τn)2
, (11)

where τn is the duration between zero crossings (see Fig. 4 (b))
and ρn ∈ [0, 1] is the roll-off factor, which determines the
smoothness of the pulse frequency response. We can construct
gn(t) given by Eq. (1) as the periodic extension of r(t), being
T0 large enough with respect to τn. Fig. 4 (b) shows the
magnitude of such a periodic pulse which, additionally, can
be shifted in time δn with respect to t = 0. Then, the FT of
gn(t) will be (see Fig. 4 (b)) [8], a frequency comb at ω = qω0

(q ∈ Z), whose envelope is
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Fig. 4. (a) Periodic rectangular pulsed signal and its frequency response showing poor harmonic windowing characteristics, evidenced by the corresponding
Anq expression. (b) The versatility of the proposed structure shown Fig. 1 allows for generating a periodic train of Nyquist pulses with a duration τn between
zero crossings and a roll-off factor ρn. The spectral lines—with magnitude Anq—are under a practically rectangular windowing envelope corresponding to
a raised-cosine envelope.

Gn(ω) =


τn/2 |ω| < ω1

τn
4

[
1 + cos

(
π(|ω| − ω1)

2π/τn − 2ω1

)]
ω1 ≤ |ω| ≤ ω2

0 |ω| > ω2,
(12)

being ω1 = 2π(1− ρn)/τn and ω2 = 2π(1 + ρn)/τn. Hence,
the Fourier series coefficients in Eq. (1) for q < ω1/ω0 will
be anq = Gn(qω0)/T0 = τn/(2T0)e−jqω0δn . Therefore, if we
want to fix the order (L) of the identical harmonic patterns to
be exploited (flat response of Gn(ω)), we can keep constant
the bandwidth 2ω1 (see Fig. 4 (b)), i.e.,

2π(1− ρn)/τn = Lω0, (13)

leading to τn = (1− ρn)T0/L. On the other hand, if we want
to guarantee that the harmonic with order L+ 1 (and beyond)
be totally suppressed, the following condition must be satisfied
(see Fig. 4 (b)):

4πρn/τn < 2π/T0, (14)

thus arriving at the condition ρn < τn/(2T0) for the selection
of ρn. Under these assumptions, we have that Anq and Φnq
in Eq. (1) are given by

Anq = τn/(2T0), and
Φnq = −qω0δn. (15)

Finally, we next show two examples of application of the
scheme proposed in Fig. 1 when controlled by periodic
Nyquist pulses.

0 50 100 150

- 14

- 12

- 10

- 8

- 6

- 4

- 2

0

Fig. 5. Radiation pattern of the proposed structure controlled by Nyquist
pulses. For this application we have considered ĝn(t)=0 in order to intention-
ally generate negative and positive harmonic patterns to efficiently perform
direction finding using 15 simultaneous beams.

1) Direction Finding: The proposed TMA governed by
Nyquist pulses has the capacity of generating a reconfigurable
number of identical uniform steerable harmonic beams. Hence,
it can be applied to compare the strength of simultaneously
received signals (over the different harmonic beams pointing
towards different directions) in order to determine the direc-
tion of arrival (DOA) of a desired signal. Fig. 5 illustrates
an example of radiation pattern using 15 beams where the
complex structure of the array is not exploited deliberately
(i.e., ĝn(t) = 0) with the aim of generating also the negative
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patterns in order to cover as much spatial directions as possible
in a simple way.

2) Multipath Receiver: The proposed system is capable of
exploiting the harmonic patterns at reception by transforming
spatial diversity into frequency diversity. By means of a
receiver scheme equipped with a maximum ratio combining
(MRC) as the one shown in [2, Fig. 1]—considering the
proposed TMA shown in Fig. 1 instead of that in [2, Fig. 1]—
it is possible to design a wireless communication receiver ca-
pable of profitably exploiting channel diversity in the form of
angular diversity captured by the sideband radiation (harmonic
patterns) exhibited by the TMA. Once again, the differentiating
advantage of this system is its SSB ability that improves the
antenna efficiency as well as the SNR. Notice that the main
behavior difference of this scheme based on Nyquist pulses
with respect to conventional TMAs is that the normalized
pulse durations in the time domain, ξn, are employed solely to
determine the number of harmonics to be exploited, whereas
the pulse time-shifts δn are set to point towards the different
incoming signals. Hence, by fixing the same ξn for all n
we will synthesize L + 1 uniform radiation patterns over the
corresponding frequencies ωc + qω0 with q = 0, 1, . . . , L.
Fig. 6 shows a radiation pattern for L = 3. The limitations
of the proposed technique for this application is the synthesis
(exclusively) of uniform patterns with an SLL of −13 dB and
the non-steerable pattern at q = 0.

IV. CONCLUSIONS

We have proposed a novel TMA architecture supporting
multiple beamforming at the fundamental and harmonic fre-
quencies that is controlled by generic periodic pulses using
amplitude and/or time tapering. We have modeled mathemati-
cally the radiation features of the proposed TMA architecture
and have shown its applicability by analyzing its behavior
with a varied range of periodic signals. We have also explored
potential applications such as signal direction finding or spatial
diversity exploitation with a multipath receiver that converts it
into frequency diversity, thus requiring a single RF branch—
with larger bandwidth— to receive all the signal replicas.
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