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Abstract—Videos captured with body-worn cameras
may be affected by distortions such as motion blur,
overexposure and reduced contrast. Automated video
quality assessment is therefore important prior to
auto-tagging, event or object recognition, or auto-
mated editing. In this paper, we present M-BRISQUE,
a spatial quality evaluator that combines, in real-
time, the Michelson contrast with features from the
Blind/Referenceless Image Spatial QUality Evaluator.
To link the resulting quality score to human judgement,
we train a Support Vector Regressor with Radial Basis
Function kernel on the Computational and Subjective
Image Quality database. We show an example of appli-
cation of M-BRISQUE in automatic editing of multi-
camera content using relative view quality, and validate
its predictive performance with a subjective evaluation
and two public datasets.

Index Terms—Body-worn cameras, video quality,
real-time processing.

I. Introduction
Body-worn cameras are increasingly popular [1], [2],

and their market is expected to reach USD 10.9 billion
by 2025 [3]. Videos taken with body-worn cameras are
often captured under uncontrolled conditions, without
viewfinder and subject to abrupt motion of the wearer [4],
which generate distortions such as overexposure, defocus
and blur. Therefore, it is important to automatically
estimate video quality prior to further processing, for
example for object and action recognition, automatic tag-
ging, search and editing. A challenge in automatically
assessing the quality of videos from body-worn cameras
is that distortions may considerably vary over time, thus
making methods that assign a single score after processing
the video [5] not applicable. Algorithms that operate on
each frame or on short temporal windows are instead
preferable [6].

A video quality assessment method can be full ref-
erence, reduced reference, mutual reference or no refer-
ence. Full and reduced reference methods assume that a
distortion-free video is available to help identifying and
quantifying the distortions. Full reference methods use
the whole distortion-free frames [7], [8], while reduced
reference methods use only partial information [9], such as
features from a divisive normalisation transformation [10]

or local entropy [11]. Mutual reference methods measure
quality relative to pseudo-reference frames that contain
overlapping content with the tested image, although not
necessarily pixel-aligned [12]. Finally, no-reference meth-
ods use general properties of a good video [13] or measure
typical distortions, such as blur, blocking artifacts or lack
of naturalness [14]–[17].

No-reference methods can be classified as distortion-
specific and non-distortion-specific [18]. Distortion-specific
methods assume the type of distortion(s) to be known. For
example, Just Noticeable Blur [19] quantifies sharpness
in images with uniform saliency content and Cumula-
tive Probability of Blur Detection [16] deals with non-
uniform saliency content with a probabilistic model of
blur perception with strong edges. Non-distortion-specific
methods estimate frame quality using statistics on im-
age indexing (e.g. Blind Image Quality Index [15]) and
natural scenes (e.g. Distortion Identification-based Image
Verity and INtegrity Evaluation [20]), or with probabilis-
tic models of visual quality perception [21], [22]. Code-
book Representation for No-Reference Image Assessment
(CORNIA) [23] uses image patches as feature and soft-
assignment coding with max pooling to characterise im-
age distortions. Blind/Referenceless Image Spatial QUal-
ity Evaluator (BRISQUE) builds on the work of Ruder-
man [24] and describes image distortions with a set of
coefficients integrated in a statistics-based model [14].

Unlike methods that employ Gabor filters, Wavelets or
discrete cosine transform [10], [21], [25], [26], CORNIA and
BRISQUE work directly in the spatial domain. BRISQUE
is one order of magnitude faster than CORNIA [18].
However, the performance of BRISQUE is unsatisfactory
with contrast distortions [27].

In this paper, we present M-BRISQUE, a no-reference
non-distortion-specific video quality assessment method
that works in real-time. We adopt the Michelson con-
trast [28] to account for distortions that are spe-
cific to body-worn camera videos and combine it with
BRISQUE [14]. We designed the implementation as a set
of concurrent parallel processes and compute M-BRISQUE
on short temporal windows for on-line assessment. Our
CPU implementation uses two multi-thread processes in
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cascade and reaches real-time performance for videos at
resolution 1920×1080 pixels, processed at 24 Hz. We show
the application of M-BRISQUE for multi-view camera
selection, and validate the predictor with a subjective
evaluation on body-worn camera videos and on two public
datasets.

The paper is organised as follows. Sec. II introduces M-
BRISQUE, its application to multi-view content editing
and its real-time implementation. Sec. III presents the
experimental validation and Sec. IV draws the conclusions.

II. M-BRISQUE
A. The feature vector

Let I(i, j) be the intensity of pixel (i, j), and Imax and
Imin be the maximum and minimum intensity values in a
frame. The Michelson contrast, Cm, is a frame-level score
defined as [28]:

Cm = Imax − Imin
Imax + Imin

. (1)

The Mean Subtracted Contrast Normalised (MSCN) co-
efficients, Î(i, j), describe locally the normalised luminance
and vary coherently in the presence of a distortion, and are
defined as [14], [24]:

Î(i, j) = I(i, j)− µ(i, j)
σ(i, j) + 1 , (2)

with

µ(i, j) =
K∑

k=−K

L∑
l=−L

ωk,lI(i+ k, j + l) (3)

and

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l (I(i+ k, j + l)− µ(i, j))2
, (4)

where ω = {ωk,l : k ∈ [−K,K], l ∈ [−L,L]} is a circular-
symmetric 2D Gaussian normalised to a unit value and
sampled at 3 standard deviations.

The specific distortion can be estimated by fitting Gen-
eralised Gaussian Distribution (GGD) and Asymmetric
Generalised Gaussian Distribution (AGGD) models to
the histogram of the MSCN coefficients, based on the
assumption that MSCN coefficients statistically present
a Gaussian distribution in undistorted images [14], [24].
GGD is defined by shape, α, and variance, σg:

f(x;α, σ2
g) = α

2βΓ( 1
α )
exp

(
−
(
|x|
β

)α)
, (5)

where x = Î(i, j), β = σg
√

Γ(1/α)/Γ(3/α) and Γ(a) =∫∞
0 ta−1e−tdt with a > 0. The distribution is zero mean

and (α, σ2
g) are estimated using moment-matching [14].

The zero-mode AGGD is obtained as

f(x; ν, σ2
l , σ

2
r) =


ν

(βl+βr)Γ( 1
ν )exp

(
−
(
−x
βl

)ν)
x < 0

ν
(βl+βr)Γ( 1

ν )exp
(
−
(
x
βr

)ν)
x ≥ 0

(6)

with the left, βl, and the right, βr, scale parameters
defined, respectively, as

βl = σl

√
Γ
( 1
ν

)
Γ
( 3
ν

) (7)

and

βr = σr

√
Γ( 1

ν )
Γ
( 3
ν

) , (8)

where ν defines the shape of AGGC; and σ2
l and σ2

r define
the horizontal and vertical variances, respectively. If σ2

l =
σ2
r then AGGD reduces to GGD. The values of ν, σ2

l , and
σ2
r are estimated by moment-matching, as for GGD.
The four parameters characterising AGGD are η, ν, σ2

l

and σ2
r . The mean of AGGD is defined as

η = (βr − βl)
Γ
( 2
ν

)
Γ
( 1
ν

) . (9)

AGGD is calculated on four orientations of the MSCN
coefficients:

H(i, j) = Î(i, j)Î(i, j + 1),
V (i, j) = Î(i, j)Î(i+ 1, j), (10)
D1(i, j) = Î(i, j)Î(i+ 1, j + 1),
D2(i, j) = Î(i, j)Î(i+ 1, j − 1),

corresponding to horizontal, vertical and two diagonals
orientations, respectively.

The resulting 37-dimensional M-BRISQUE feature vec-
tor is composed of Cm, and the two parameters for GGD,
namely α and σ2

g , and the 16 parameters for AGGD,
namely η, ν, σ2

l and σ2
r calculated in four orientations,

on two scales.

B. Mapping the feature values to human judgement

The M-BRISQUE score, sk, at frame k is generated
through a Support Vector Regression (SVR) trained with
Radial Basis Function (RBF) kernels1 [29], [30]. This
provides the mapping between the feature vector presented
in the previous section and human judgement, which we
compute with the Spearman’s Rank Ordered Correlation
Coefficient (SROCC) [14] as objective function that op-
erates in [0, 1]. To prevent overfitting, we perform cross
validation.

We train M-BRISQUE on the Computational and Sub-
jective Image Quality database [31], which consists of 30
original images and six distortions: JPEG and JPEG2000
compression, global contrast decrements, additive pink
Gaussian noise, and Gaussian blurring. Figure 1 shows M-
BRISQUE scores for a set of sample frames.

1SVR is implemented by LIBSVM https://www.csie.ntu.edu.tw/
∼cjlin/libsvm/, last accessed June 2018.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2175



(a) 0.262 (b) 0.444 (c) 0.748

Fig. 1: M-BRISQUE score for sample frames from a body-
worn camera video [4] (the lower M-BRISQUE, the better
the quality): (a) good-quality frame, (b) overexposed and
blurred, (c) heavily blurred.

Fig. 2: Multi-view camera selection based on M-
BRISQUE. Columns: different camera views; rows: scene
captured from different views at the same time instant.
The number overlaid on each frame is its M-BRISQUE
score (the lower M-BRISQUE, the better the quality). The
red dot indicates the selected view.

C. Application to view selection
M-BRISQUE can support, for example, multi-view cam-

era selection applications. In such applications, videos of
the same event recorded simultaneously are analysed to
generate automatically a single video by selecting the
best-quality view over time [32]. For simplicity, we switch
among views every T = 5 seconds by selecting the best
available view (excluding the currently selected view)
defined by the mean M-BRISQUE score over the previous
0.5 seconds. Figure 2 shows sample frames from this
application, indicating the selected view in four switching
instances. Additional examples can be seen at [33].

D. Speed
M-BRISQUE is implemented as two multi-thread pro-

cesses in cascade. The first thread deals with multiple
input videos and considers each video as an independent
source that concurrently accesses the available resources.
The second thread deals with video quality assessment by
three parallel processes that extract the 37-dimensional
feature vector for each frame (see Fig. 3). Process 1 is for
the Michelson Contrast, and the other two processes are
for GGD and AGGD on the original image-size (process 2)
and the halved image-size (process 3).
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Fig. 3: Block diagram of the parallel processes for feature
extraction in M-BRISQUE (the symbol “∗” indicates vari-
ables obtained on the down-sampled image).

TABLE I: Speed of M-BRISQUE (Hz) when processing
on a single CPU up to four videos playing simultaneously.

video number of videos
resolution 1 2 3 4

720×576 78.23 29.00 15.19 9.87
1280×720 42.75 16.39 8.13 5.00
1920×1080 24.39 8.13 4.27 2.54

M-BRISQUE performs video quality assessment in real
time on a 3.4 GHz Intel Core i7 machine with 32 GB of
memory. Table I shows the computational speed of M-
BRISQUE when assessing on the same machine multiple
videos at different resolutions.

A dynamic sampling controls how many frames per
second the M-BRISQUE software can handle over time.
We set the minimum sampling rate to 3 Hz and, in order
to avoid fluctuations due to abrupt temporal variations, a
buffer, B, of 15 frames stores the scores of each processed
frame and the mean of these scores is considered. See [33]
for a video with the screen-capture of a demo.

III. Validation
A. Experimental setup

We perform the experimental validation with a subjec-
tive test and three quality measures on two publicly avail-
able datasets, LIVE Image Quality Assessment Database
(IQAD) [34] and LIVE Mobile In-Capture Video Quality
Database (MICVQD) [35].

IQAD consists of 982 images with five distortion types.
We only consider distortions that are relevant to our
problem, namely white noise, Gaussian blur and simulated
fast fading Rayleigh channel. This selection results in 522
test images.

MICVQD consists of 208 videos captured with eight
hand-held mobile devices, and categorised into six dis-
tortions typically occurring with amateur recordings and
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TABLE II: Spearman’s Rank Ordered Correlation Coefficient between objective scores and subjective judgements on
the LIVE Image Quality Assessment Database (IQAD) [34] and the LIVE Mobile In-Capture Video Quality Database
(MICVQD) [35] for different distortions.

IQAD MICVQD
Method White noise Gaussian blur Fast fading Artifacts Colour Exposure Focus Sharpness Stabilisation

RMS .191 .045 .011 .007 .171 .026 .147 .007 .134
Michelson Contrast .510 .063 .094 .400 .130 .473 .080 .580 .280
BRISQUE .900 .752 .628 .601 .328 .492 .301 .451 .513
M-BRISQUE .932 .534 .786 .558 .516 .601 .358 .544 .508

(a) 0.345 (b) 0.107 (c) 0.466

(d) 0.047 (e) 0.426 (f) 0.461

(g) 0.685 (h) 0.452 (i) 0.225

(j) 0.268 (k) 0.350 (l) 0.180

Fig. 4: Sample frames and their corresponding M-
BRISQUE scores (a-b) artifacts, (c-d) colour, (e-f) expo-
sure, (g-h) focus, (i-j) sharpness, and (k-l) stabilisation
(the labels of the distortions are defined in [35]).

in body-worn camera videos (given the presence of si-
multaneous distortions in the videos, the most evident
is considered for the categorisation [35]). The distortions
are (see Fig. 4): noise, blockiness and distortions not
related to video content (artifacts); incorrect or insufficient
colour representation (colour); over/under exposed regions
(exposure); out-of-focus distortions (focus); general lack of
details, texture or sharpness (sharpness); and for camera
shake (stabilisation).

B. Comparison of quality measures
We compare M-BRISQUE with BRISQUE [14], Michel-

son Contrast and RMS [5], and we correlate through
SROCC the score of each method with the subjective
quality scores provided with the datasets (the ground
truth for our experiments), similarly to [14], [22].

All methods are trained on the Computational and
Subjective Image Quality database, as M-BRSQUE, using
a cross validation with 80% training and 20% testing on
100 random runs. K = L = 3 [14] in our experiments.

Fig. 5: The interface used for the subjective evaluation.

Table II shows the mean score of all images on IQAD
and MICVQD, with MICVQD being generally a more
challenging dataset compared to IQAD, as expected.
BRISQUE outperforms the other methods in 2 out of 3 dis-
tortions in IQAD and 3 out of 6 distortions in MICVDQ.
Interestingly, the Michelson Contrast alone performs well
in more than half of all distortions. These results show
how, on average, the best performance is obtained by a
combination of local (BRISQUE) and global (Michelson
Contrast) cues.

C. Subjective experiment
We also validate M-BRISQUE with a double-stimulus

subjective evaluation (Fig. 5), using a setup similar to [12].
Subjects were asked to select the video with better tech-
nical quality in each pair. The technical quality mainly
refers to overexposure, out of focus, blur, camera rotation
and shaking, and does not include content.

The dataset comprises 16 clips, of 5 seconds each,
obtained from the body-worn camera videos of the set 7
of the 1st-3rd dataset [4] (sample frames can be seen in
Fig. 1). As quality may considerably vary over time, we
choose clips whose M-BRISQUE score is contained within
a 10% variation during the clip. We randomly select 18
clip pairs and also add two pairs as duplicate of a previ-
ous pair, but with videos displayed in inverted positions
(left to right and vice versa) to check the consistency of
judgement. There are therefore 20 video pairs to evaluate.

A total of 28 subjects participated in the experiment (18
males and 10 females). The choice same quality videos was
also an option leading to 33% chance for each choice with
a random classifier. The same quality option was selected
four times per test on average. The experiment revealed
the difficulty in judging the (technical) quality of body-
worn camera videos as subjects inconsistently marked the
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two duplicated pairs 39% of the time (of which 55% of the
time included a same quality judgement and 45% of the
time consisted in a swapping of the preferred video). The
M-BRISQUE scores agree with the subjective choices 45%
of the time, calculated on the 18 pairs.

IV. Conclusion
We presented M-BRISQUE, a real-time video qual-

ity assessment method based on the Michelson con-
trast and BRISQUE. M-BRISQUE achieves good perfor-
mance on the LIVE Image Quality Assessment Database
(IQAD) [34] and LIVE Mobile In-Capture Video Quality
Database (MICVQD) [35]. As future work, we will use
short-term temporal information across frames and ex-
pand the pool of videos for the subjective test.
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