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Abstract—Transformations for signals defined on graphs are
playing significant role in applying the emerging graph signal
processing techniques to different tasks. In this paper we focus on
utilizing graph signal dictionary, a data-driven transformation,
for regression. Apart from spelling out the joint optimization
formulation, as well as the associated iteration steps to arrive at
the dictionary and the regression coefficients, the paper provides
some initial results to bring out the usefulness of the proposed
approach.

I. INTRODUCTION

Representation Learning (RL) refers to learning represen-
tations of the data that make it easier to extract useful
information when building classifiers or other predictors (like
regressors) [1]. One instance of RL being dictionary learning,
which lead to a compact representation of the data in many
situations. Traditionally, they have been used extensively for
analysis and synthesis problems, especially arising in image
processing [2], [3], [4], [S]. Many natural signals have sparse
representation when appropriate dictionary is used for decom-
position. The basic formulation for dictionary learning is given

as:
X =DZ (1)

where, X € RV*M g the data that is represented by the
learnt dictionary D € RV *K containing atoms as its columns
and the learnt coefficients Z € RE>M,

Dictionary learning originated from matrix factorization [6]
and sparse coding [7] problems. Method of Optimal Directions
(MOD) [8] is used to solve the standard matrix factorization
problem by alternately solving for the two variables D and
Z:

. 2
min || X — DZ|F 2

On the other hand, K-SVD algorithm [9] is more popular for
solving sparse coding problems, where Z is constrained to be
sparse. This leads to the following formulation:

i — 2 s.t. <
g}gllX DZ|zstlZlo<T 3)

where, || Z||o is the [y sparsity measure which ensures that the
optimization results in a sparse representation of data learnt
using at most 7 non-zero entries of Z.

Dictionary Learning based techniques have been also ex-
plored for classification tasks [10], [11]. There are both two-
stage approaches [12], where the sparse coefficients and dictio-
nary are learnt separately, keeping the other fixed and single-
stage approach [13], where a joint optimization framework
is used to learn the dictionary, coefficient and classification
weights together. Few works also report the use of sparse
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coefficients as features which are fed to conventional machine
learning models to carry out classification [7], [14]. The
application of dictionary towards regression tasks is, however
limited [15], [16]. The work in [15], presents a fast method for
sparse regression in the presence of missing data. The other
work [16] proposed a kernel dictionary learning based frame-
work for regression which could capture the non-linearities in
the data and outperform the conventional Kernel Regression.

With the signals exhibiting a graph nature in applications
like, social, economic, biological networks, transportation and
sensor networks, there is a need to analyze this data for both
classification and regression tasks. Some works [17], [18]
have been reported on representation learning using dictio-
nary which utilizes the underlying structure of the data. Few
attempts have been made [19], [20], where the smoothness
on the manifold graph Laplacian is used as an additional
constraint for learning the dictionary and sparse coefficients
for classification tasks. The smoothness in the Graph Signal
Processing (GSP) domain is described in terms of Graph Total
Variation (GTV) given as:

GTV =s"Ls= Y W(i,j)[s(i) — s(j)]” (4)
(i,5)EE

where W(i,j) is the weight assigned to the connection be-
tween vertices (i, 7), s is the graph signal and L is the graph
Laplacian. The W(i, j) representing the graph is constructed
such that similar signal values at the vertices are connected
with high weights and vice-versa. The smoothness expression
when evaluated, eventually results in small value of graph
total variation, suggesting the signal is smooth with respect
to the underlying graph. Using this notion of smoothness, the
manifold regularized sparse coding is formulated as [21]:

%112 | X — DZ||% + fTrace(ZLZT) s.t.| Z|o < T (5)

where, L here is the manifold Laplacian, which represent
the correlation between data elements. It is worth noting
that, the important notion of graph smoothness which is
extensively used in GSP formulations, is captured in the
second term involving the trace. The work in [20] learns the
graph Laplacian in the joint optimization framework along
with the sparse coefficients and dictionary atoms such that
the manifold geometry is preserved. Coming to the popular
Machine Learning tasks, so far, only classification problems
have been addressed using the graph structured dictionary.
Extending the work to regression tasks, using dictionary
learnt for signals defined over graphs, in this paper, Graph
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Structured Dictionary Learning framework for Regression
(GDLR) is proposed. To the best of our knowledge, there has
been no prior study on graph structured dictionary learning
where the regression weights are learnt within the dictionary
learning framework. The proposed method exploits the un-
derlying structure of the data while learning the dictionary
and weights of the regression model in a joint optimization
framework. With the underlying structure of the data captured
appropriately by the graph, this technique outperforms the
traditional Linear Regression (LR), Kernel Regression (KR)
and Dictionary Learning for Regression (DLR).

Towards providing the formulation of the proposed method-
ology and demonstrating its potential for regression tasks, this
paper is organized as follows. Section II gives a brief back-
ground on graph and graph signals. The detailed formulation
of the proposed Graph structured Dictionary Learning frame-
work for Regression (GDLR) is given in section III. Section
IV presents the results of the proposed method obtained using
synthetic and real-life dataset. This is followed by section V
which concludes the work.

II. BRIEF BACKGROUND ON GRAPH AND GRAPH SIGNALS

Graphs are generic models which are used to represent the
complex relationship between data elements of any arbitrary
dataset. A graph G = (V, £) is represented by a set of vertices
V, where V = {v,})_; and a set of edges £ connecting the
vertices. The adjacency matrix A € CN*V is used to define
the connections between vertices using edges. If there exists an
edge e = (i, j) between vertices 7 and j, A(4,j) = 1 otherwise
it is 0. The weight matrix W € CV*¥ assigns weights to
the connections in A by capturing the complex interactions
between the vertices. Usually these two matrices are defined
by the application. Otherwise, one way is to estimate it directly
from the data [22], or use a thresholded Gaussian kernel
weighting function [23], [24] expressed as:

Wi, ) exp(—|dist(i,)|*/0?), if dist(i,j) < k.
i,7) = .
J 0, otherwise.

(6)

where, o is a scaling factor and dist(¢,7) is the distance
measure between vertices ¢ and j which can be either the
Physical distance, Euclidean distance or Cosine distance etc. x
is the threshold applied on the distance measure which decides
the connection between the vertices.

Another important matrix associated with graphs is the
graph Laplacian L which contains most of the information
of the graph and its properties [24]. It is a real symmetric
and positive semi-definite matrix. For an undirected graph, the
unnormalized graph Laplacian L is defined as: L = D — W.
where, W is the weight matrix and D is the degree matrix,
which is a diagonal matrix containing the sum of weighted
edges incident on the vertices of the graph along its diagonal,
and is expressed as: D(i,i) = >, W(i, j). Normalized graph
Laplacian Ly, oy, is obtained as:

Lyorm =D LD 3 7
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The signal on the graph or graph signal s is a signal whose
samples reside on the vertices of the graph. Graph signal as
defined in [24] is a signal or function s : VV — R defined on the
vertices of the graph may be represented as a vector s € RY,
where the ith component of the vector s represents the function
value at the ¢th vertex in V. The emerging field of GSP
provides signal processing tools which work on signals having
an underlying graph structure [24]. An important tool used for
analysing these signals is Graph Fourier Transform (GFT). It
is computed as: § = U~ 's, where U are the eigenvectors
obtained by the eigen-decomposition of either L or W. The
Inverse Graph Fourier Transform (IGFT) is given as: s = U 3.

These concepts are used to address the problem of regres-
sion where the data elements exhibit a graph structure. The
intrinsic structure of the signals is exploited for enhanced
representation learning using a dictionary which is described
next.

III. GRAPH STRUCTURED DICTIONARY LEARNING FOR
REGRESSION

Graph structured dictionary learning framework incorpo-
rates a ridge regression penalty and additional Laplacian
regularization term in the objective function that enforces the
coefficients to be smooth with respect to the intrinsic structure
of the data. Given the manifold Laplacian, the dictionary,
coefficients and regression weights are learnt together in a
joint optimization framework. For a multivariate data of NV
training samples, mathematically, the proposed dictionary-
based regression is formulated as:

DInZin | X -DZ|%+ally — wZ||3+Trace(ZLZT) (8)

s Ly W
where, X € RLXN represent the independent variables of
feature vector length L and y € R¥ represent the dependent
variable. D € R¥*X js the dictionary, containing atoms as its
columns and Z € REXN the learnt coefficients; L € RV*N
is the manifold Laplacian of the data and w € R¥ are the
regression weights.

The sparsity term is not included in (8), since the focus is on
regression, where undercomplete dictionaries would be used.
Two phases are involved in carrying out regression using the
proposed technique: (i) Training phase, where the dictionary
and regression weights are learnt utilizing the graph structure,
and (ii) Test phase where these learnt parameters are used
for estimating the target or dependent variable. The requisite
optimization problems to be solved in these two phases and
their closed form solution are detailed below.

A. Training Phase

The standard alternating minimization approach is used to
solve (8). The sub-problems required to be solved are:

DengnHXfDZHzF )

Z < min||X - DZ|% +ally — wZ|3 + fTrace(ZLZT)
(10)
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(1)

Each of the sub-problems have a closed form update; (9) and
(11) are straightforward linear inverse problems; the closed
form inverse is the Moore-Penrose pseudo-inverse. The update
for Z is obtained by taking a derivative of (10) with respect
to Z and equating it to 0. It results in a Sylvester equation of
the form:

(DTD + acwT™w)Z + ZBL = DT X + aw®y  (12)

Since the eigenvalues of (DT D + awTw) and (—BL)
are distinct, a unique solution for Z exists [25].

B. Test Phase

Given a new test sample Tiest, the target or dependent
variable §test 1s estimated using the dictionary and regression
weights learnt in the training phase. As a first step, the
corresponding feature coefficients zies; are computed using
the model expressed as:

w < min ||y — wZ|3
w

13)

Since the dictionary is known, the solution for zies: is
formulated as:

Ttest = Dzgest

min ||mtest — thest”%“ (14)

Ztest
The feature 2.5+ once computed, is multiplied by the learnt
regression weights to get the Jiest-

15)

Ytest — WZtest

The pseudo code of the GDLR algorithm is presented in
Algorithm 1.
Algorithm 1 Graph Structured Dictionary Learning for Re-
gression (GDLR)
Input: Set of training data, X = Xirain, Y = Ytrain, K
(size of dictionary), regularization parameters (c, 3), Graph
Laplacian L, test data ®¢est
Output: Learnt dictionary D, weight vector w, estimated
output Yrest
Initialization: Set Zy to random matrix with real numbers be-
tween 0 and 1 drawn from a uniform distribution, wg = yZ f
(t denotes pseudo inverse) and Dy = O, iteration ¢ = 1

1: procedure

2: loop: Repeat until convergence (or fixed number of itera-
tions Maxitr)

3 D+ XZ!,

4 Normalize each column in D; to a unit norm

5 Z; < update using D; and w;_; using (10)

6: w; <— ’yZ;r

7 14—1+1

8 if |D; — D;—_1]|r < Tol or i == Maxitr then

9: Ztest < Dtmtest

10: ’gtest — WZtest

11: close;

12: else go to loop
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IV. PERFORMANCE STUDY AND DISCUSSION

This section discusses the performance of the proposed
graph structured dictionary framework for regression tasks.
The results are demonstrated using both synthetic data and
real-life data. For comparative study, the estimation results
obtained with the proposed GDLR method are presented along
with those obtained from traditional Linear Regression (LR),
Kernel Regression (KR) [26] and traditional Dictionary Learn-
ing (DLR) framework. DLR method makes use of the similar
joint optimization framework mentioned in (8) but, without
the Laplacian regularization term. It is worth noting that the
performance of any graph structured dictionary learning is
sensitive to how well the graph Laplacian L is learnt from the
data. So it is necessary that the learnt L is able to represent the
relationship between data elements. This work makes use of
the Gaussian kernel weighting function given in (6) to compute
the graph structure from which L is estimated. Mean Squared
Error (MSE) and Mean Absolute Error (MAE) are used as
the performance metrics for evaluating different methods. The
parameters o and 3 for GDLR and « for DLR are carefully
tuned after exhaustive grid search.

A. Synthetic Data

The performance of the proposed framework is assessed
with synthetic data where the dictionary, regression weights
and the underlying graph structure of the multi-variate data
is known. A random sensor graph of N = 100 vertices
is constructed using the GSP toolbox for Matlab [27] from
which the graph Laplacian, Lge,, is obtained. Five signals
corresponding to multi-variate data are defined in the spectral
domain s (s7 to s5), as heat kernels [27] with different values
for 7 (5, 3, 2, 1, 0.5). The corresponding signals in the vertex
domain,  (x1 to x5) is obtained by taking the IGFT of
individual signals defined in the spectral domain described in
section II.

Since the graph smoothness constraint is applied on the
coefficient Z, Zgey, is constructed by column-wise stacking
of the vertex domain signals, (x7 to xs). This is used for
generating the training data, Xypqsn using a pre-defined
dictionary, Dgey,. The target output for regression, Yirgin
is obtained by multiplying a known weight vector, wgey, With
Z gern obtained in the previous step. The test data, Tiest, Ytest
is generated in a similar way using different values of 7 (4,
2,05, 1, 3).

Non-linearity is introduced in the data by taking the cube
of the individual elements of the multi-variate data before
subjecting it to different methods for regression analysis.

Here, the training is carried out using 100 samples. A graph
of 100 vertices is constructed using (6) with every vertex
carrying a multi-dimensional feature vector or time series
generated synthetically. The norm of the distance measure,
dist(i, 7) is taken to define the connection between the vertices
of the graph. The graph Laplacian is computed for this graph
and is normalized using (7) before being fed to the GDLR
algorithm. The dictionary of size K = 5 atoms is learnt
for both GDLR and LR. The testing is carried out using 20
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Fig. 1. Target Variable estimation with Different Methods

TABLE I
RESULTS WITH SYNTHETIC DATASET REVISED
Algorithm MSE MAE
GDLR(K =5,0 =20) 520.16 16.87
KR 560 17.5
LR 67438  19.15
DLR(K = 5) 678.41  19.20

samples of the test data. Figure 1 presents the estimation
results of the target or dependent variable using different
methods. Table I summarizes the estimation accuracy obtained
with the test data in terms of MSE and MAE. It is observed
that exploiting the underlying graph structure, GDLR results in
better performance than the traditional LR and DLR methods.

B. Real-life Data

Energy Efficiency is one of the public UCI dataset which is
considered for regression analysis. This dataset is comprised
of 768 samples of 8 features (Relative compactness, Surface
area, Wall area, Roof area, Overall height, Orientation, Glazing
area, Glazing area distribution) which are used to assess the
heating load and cooling load requirements of buildings. It has
data from 12 different building shapes [28]. Here, the heating
load is modeled as a function of the building parameters. The
features are normalized before subjecting them to different
regression methods. Training is carried out using 690 samples
and the graph of 690 vertices is constructed in the similar way
as in the case of synthetic data. The dictionary of size K =7
atoms is considered for GDLR and K = 5 atoms for DLR
which gave the best performance. It is worth noting at this
juncture that the learnt dictionary coefficients Z exhibits the
same smoothness over the underlying data graph characterized
by L. Testing is carried out on the remaining 78 samples and
the estimation results using different methods are presented
in Fig 2. Table 2 gives the MSE and MAE of the estimation
results obtained using different methods. As is evident from
the plot, GDLR is able to capture the inter-relation between
different features and so it outperforms KR slightly and LR
and DLR by a fair margin.

V. CONCLUSION

The paper presents an approach to build a regressor by
jointly learning the graph-signal dictionary (a representation
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Fig. 2. Heating Load estimation with Different Methods

TABLE II
RESULTS WITH ENERGY DATASET REVISED
Algorithm MSE MAE
GDLR(K =7,0 =0.6) 0.0046 0.051
KR 0.0048  0.0529
LR 0.0057  0.0607
DLR(K = 5) 0.0058  0.054

of the data) and the relevant coefficients. The initial exper-
imentation carried out with both synthetic and the real data
demonstrated the applicability of the proposed method. Further
examination is underway with different graph-structured data
sets towards bringing out its full potential.
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