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Abstract—We propose a class of fast algorithms, efficiently
performing nonlinear Schur parametrization of higher-order and
non-Gaussian stochastic processes, following from consideration
of (weak) higher-order stationarity of the underlying signals and
resulting in essential nonlinear complexity reduction, allowing
for their practical implementations.

Index Terms—Nonlinear Schur parametrization, nonstationary
and stationary higher-order stochastic processes

I. INTRODUCTION

One of the most important problems in signal process-

ing is the Schur parametrization of stochastic signals [7],

mapping a signal statistics into a set of the Schur coef-

ficients which are used to solve a variety of applications-

oriented topics (innovations filtering, decorrelation, whitening,

stochastic modeling, pattern recognition (including speech

and speakers recognition), transmission with compression of

information (LPC method [9]), maximum entropy spectral

estimation, Nevanlinna-Pick interpolation, among others). If an

observed signal is Gaussian, its second-order statistics are the

’sufficient statistics’. Hence, the linear Schur parametrization

algorithms are employed. In the non Gaussian case, the signal

higher-order statistics have to be considered, and the linear

approach has to be replaced by the nonlinear Schur-type

parametrization algorithms whose complexity is tremendously

growing (in comparison with the linear case) when the order as

well as nonlinearity degree are updated, yielding (from some

order and degree on) practically useless algorithms. Therefore,

nonlinear complexity reduction is of crucial importance. To

do that, in this paper we present a class of fast algorithms

performing efficiently the nonlinear Schur parametrization of

fourth-order stochastic processes (corresponding to the second

degree nonlinear approach), following from a consideration of

a class of fourth-order stationary processes. This approach,

generalizing the corresponding linear case and resulting in a

considerable complexity reduction, can be straightforwardly

extended to higher degrees of nonlinearity, corresponding to

consideration of higher-order stochastic processes.

II. LINEAR SCHUR PARAMETRIZATION OF SECOND ORDER

STOCHASTIC PROCESSES

Let y denote a second-order, zero-mean, discrete-time and

real-valued stochastic process observed on a finite time-

interval and represented by the set of linearly independent

random variables {yt, yt−1, . . . , yt−n} where t is a reference

point. The linear Schur parametrization procedure is a trans-

formation, mapping the second-order statistics (e.g. covariance

matrix) of y into a set of the so-called Schur coefficients,

as it is schematically shown in Fig. 1. This transformation

second-order

statistics
Linear

Schur Parametrization
one-dimensional
Schur coeffificients

Fig. 1. The linear Schur parametrization problem.

is performed by the linear (J-orthogonal) innovations (equiv-

alently: decorrelation or whitetning) filter whose parameters

are exactly the extracted Schur coefficients, and - hence -

the term ’parametrization’. This transformation results from

the celebrated Schur algorithm [7] [5], and is closely related

to the Levinson algorithm [4], yielding the theory of linear

orthogonal filters [2].

A. Nonstationary case

1) Second-order nonstationary stochastic processes: As-

sume t = 0 and introduce the estimation space Sn
0

∆
=

∨{y0, . . . , y−n} (where ∨{·} stands for the ’span of’). In-

troducing the inner-product on Sn
0 as hi,k = (y−i, y−k)

∆
=

Ey−iy−k (where E is the expectation operator) the Gram (i.e.

covariance) Hermitian positive-definite matrix of y will then

be H = [hi,k]i,k=0,...,n.

2) Linear Schur-type parametrization algorithms: The clas-

sical Schur parametrization is associated with second-order

stationary processes. If a process is non-stationary, generalized

Schur-type transformations have been introduced [6]. Here, we

briefly recall the linear generalized Schur-type parametrization

algorithm is a way suitable for nonlinear extensions. Consider

a family of subspaces Sk
i

∆
= ∨{y−i, . . . , y−k} and define the

forward estimate ŷki+1

∆
= P (Sk

i+1)y−i ∈ Sk
i+1 (where P (·) is
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the the orthogonal projection operator on

∨{·}) together with the coprojection εki
∆
= P (Sk

i ⊖
Sk
i+1)y−i⊥Sk

i+1 (where P (S ⊖ S′) stands for the orthogo-

nal projection operator on the orthogonal complement of S′

w.r. to S), and its nomalized version eki = εki ‖ε
k
i ‖

−1. On

the other hand, introduce the backward estimate y̌k−1
i

∆
=

P (Sk−1
i )y−k ∈ Sk−1

i together with the coprojection νki
∆
=

P (Sk
i ⊖ Sk−1

i )y−k⊥Sk−1
i )y−k, and its normalized version

rki = νki ‖ν
k
i ‖

−1. Since ek−1
i ∈ Sk−1

i but ⊥Sk−1
i+1 while

rki+1 ∈ Sk
i+1 but ⊥Sk−1

i+1 , we have the following recurrence

relations
[

eki
rki

]

= θ(ρki )

[

ek−1
i

rki+1

]

(1)

where θ(ρki ) is a J-orthogonal matrix:

θ(ρki )
∆
= (1− (ρki )

2)−
1
2

[

1 ρki
ρki 1

]

=

[

chϕk
i shϕk

i

shϕk
i chϕk

i

]

(2)

(with ρki
∆
= (ek−1

i , rki+1) being the Schur coefficient of y),

and can be interpreted as a hyperbolic rotation matrix (an

elementary parametrization section) if we put ρki = thϕk
i ,

schematically shown in Fig. 2.

e
k−1
i

e
k
i

r
k
i+1

r
k
i

ρk
i

Fig. 2. Elementary linear hyperbolic rotation.

Connected accordingly together, those sections consti-

tute the structure of the generalized (nonstationary) Schur

parametrization scheme, being a cluster of nested hyperbolic

rotations (shown in Fig. 3 for n = 2).
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Fig. 3. Linear Schur parametrization of a 2-nd order nonstationary stochastic
process (n = 4).

B. Stationary (in a weak second-order sense) case

1) Second-order stationary stochastic processes: Station-

arity of the observed process results in the linear case

in shift-invariance of the inner-product, i.e. hi+σ,k+σ =
(y−i+σ, yk+σ) = Ey−i+σyk+σ = Ey−iyk = (y−i, yk) = hi,k

(any σ) so that the second-order (two-dimensional) Hermitian

covariance matrix H of the process becomes a Toeplitz matrix

C.

2) Linear (classical) Schur parametrization algorithm:

Hence, ρk+σ
i+σ = −(ek−1+σ

i+σ , rk+σ
i+1+σ) = −(ek−1

i , rki+1) = ρki ,

and we can restrict the algorithm only to the σ = 0 ’level’ of

the linear Schur parametrization procedure, as in the stationary

case there is no nesting between the σ-levels anymore. This

is illustrated in Fig. 4.
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Fig. 4. Linear Schur parametrization of a 2-nd order stationary stochastic
process (n = 4).

C. Linear complexity reduction

Second-order (weak) stationarity assumption results in ma-

jor complexity reduction of the linear Schur paramerization al-

gorithm in comparison with the general (Hermitian) case. The

number of hyperbolic rotations in the nonstationary second-

degree n-th order inear Schur parametrization scheme equals

NLn
= 2+n−1

2
n while the associated hyperbolic rotations

number in the stationary case is SLn
= n. This linear

complexity reduction is presented in Table 1.

Table 1: Linear complexity reduction

Order No. of hyperbolic rotations Compl. reduction

n NLn
SLn

%

1 1 1 0

5 15 5 67

10 55 10 82

20 210 20 90

50 1 275 50 96

90 4 095 90 98

III. NONLINEAR SCHUR PARAMETRIZATION OF

HIGHER-ORDER STOCHASTIC PROCESSES

To an 2M -th order stochastic process (where for M = 1
we obtain the above presented linear parametrization algorithm

for a second-order process) there corresponds an M -th degree

nonlinear Schur-type parametrization procedure in which ’lin-

ear’ and ’nonlinear’ (multi-dimensional) Schur parameters are

extracted (see Fig. III).
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Fig. 5. The nonlinear Schur parametrization problem.

A. Nonstationary case

1) Higher-order nonstationary stochastic processes: Let

us consider the following generalized (block, multi-indexed)

covariance matrix of a fourth-order process

{2×2}H =

[

1⊕1H 1⊕2H
2⊕1H 2⊕2H

]

(3)

where 1⊕1H = [hik] = [(y−i, y−k)],
1⊕2H = [hikl] =

[(y−i, y−ky−l)],
2⊕1H = [hijk] = [(y−iy−j, y−k)],

2⊕2H =
[hijkl] = [(y−iy−j , y−ky−l)]. Actually, the matrix {2×2}H is

the generalized Gram matrix of a fourth-order process (while
{M×M}H = [m⊕uH ]m,u=1,...,M will be the generalized Gram

matrix of a 2M -th order process).

2) Nonlinear Schur-type parametrization algorithms: The

Schur-type nonlinear parametrization of higher-order stochas-

tic processes is actually equivalent to the generalized Gram-

Schmidt orthogonalization of multi-indexed bases of three

isomorphically isometric spaces [17], mapping the matrix

H (3) into the generalized (block, multi-indexed) unit ma-

trix, and yielding the set of the extracted generalized Schur

coefficients. This work is inspired up to some extend by

[16], although with a new – purely geometric – approach.

Consider a simplest higher- (i.e. fourth-) order (2M = 4)

process, associated with (non-trivial) second-degree nonlinear

(M = 2) Schur parametrization problem and the underlying

estimation space S = ∨{y−i, y−iy−j ; i=0,...,n ; j=i,...,n}.

Let Si
∆
= ∨{y−i, y−iy−i, . . . , y−iy−n}. Then S = S0

·
+

. . .
·
+ Sn where

·
+ stands for direct sum of subspaces.

Notice that in the nonlinear Schur-type parametrization (a

generalized Gram-Schmidt orthogonalization) the following

four types ’partial’ forward and backward order-update re-

cursions are considered: Linear-Linear (LL), Linear-Nonlinear

(LN), Nonlinear-Linear (NL) and Nonlinear-Nonlinear (NN).

Those recursions can be introduced in a similar way as in

(1)-(2). To obtain - for example - the NN recursion, consider

the subspace S
k,l
i,j = ∨{y−iy−j , . . . , y−ky−l} and define the

forward estimate ŷ
k,l
i,j

∆
= P (Sk,l

i,j+1)y−iy−j ∈ S
k,l
i,j+1 and the

coprojection ε
k,l
i,j

∆
= P (Sk,l

i,j ⊖ S
k,l
i,j+1)y−iy−j⊥S

k,l
i,j+1 with its

normalized version e
k,l
i,j = ε

k,l
i,j‖ε

k,l
i,j‖

−1. For the backward

quatities, we obtain y̌
k,l
i,j

∆
= P (Sk,l−1

i,j )y−ky−l ∈ S
k,l−1
i,j ;

ν
k,l
i,j

∆
= P (Sk,l

i,j ⊖ S
k,l−1
i,j )y−ky−l⊥S

k,l−1
i,j with its normalized

version r
k,l
i,j = ν

k,l
i,j ‖ν

k,l
i,j ‖

−1, respectively. Since e
k,l
i,j ∈ S

k,l
i,j but

⊥S
k,l
i,j+1 while r

k,l
i,j ∈ S

k,l
i,j but ⊥S

k,l−1
i,j , we have the following

recurrence relations
[

e
k,l
i,j

r
k,l
i,j

]

= θ(ρk,li,j )

[

e
k,l−1
i,j

r
k,l
i,j+1

]

(4)

where

θ(ρk,li,j ) is the J-orthogonal matrix

θ(ρk,li,j ) =(1−(ρk,li,j )
2)−

1
2

[

1 ρ
k,l
i,j

ρ
k,l
i,j 1

]

=

[

chϕ
k,l
i,j shϕ

k,l
i,j

shϕ
k,l
i,j chϕ

k,l
i,j

]

(5)

(with ρ
k,l
i,j

∆
= (ek,l−1

i,j , r
k,l
i,j+1) being the Schur coefficient of a

fourth-order process y), and can be interpreted as a hyperbolic

rotation matrix (an elementary parametrization section) if we

put ρ
k,l
i,j = thϕ

k,l
i,j , schematically shown in Fig. 6 as the NN

recursion d). The remaining hyperbolic rotations of Fig. 6 can

be introduced in a similar way, i.e.:

a) the LL elementary section

[

eki
rki

]

= θ(ρki )

[

e
l−1,l−1
i

rki,j+1

]

(6)

θ(ρki ) =(1− (ρki )
2)−

1
2

[

1 ρki
ρki 1

]

=

[

chϕk
i shϕk

i

shϕk
i chϕk

i

]

(7)

b) the NL elementary section

[

eki,j
rki,j

]

= θ(ρki,j)

[

e
l−1,l−1
i,j

rki,j+1

]

(8)

θ(ρki,j) =(1− (ρki,j)
2)−

1
2

[

1 ρki,j
ρki,j 1

]

=

[

chϕk
i,j shϕk

i,j

shϕk
i,j chϕk

i,j

]

(9)

c) the LN elementary section

[

e
k,l
i

r
k,l
i

]

= θ(ρk,li )

[

e
k,l−1
i

r
k,l
i,j+1

]

(10)

θ(ρk,li ) =(1−(ρk,li )2)−
1
2

[

1 ρ
k,l
i

ρ
k,l
i 1

]

=

[

chϕ
k,l
i shϕ

k,l
i

shϕ
k,l
i chϕ

k,l
i

]

(11)

e
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i e
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Fig. 6. Elementary linear/nonlinear hyperbolic rotations: a) LL (Linear-
Linear), b) NL (Nonlinear-Linear), c) LN (Linear-Nonlinear), d) NN
(Nonlinear-Nonlinear).

Connected accordingly together, they constitute a block

nonlinear Schur parametrization (generalized Gram-Schmidt

orthogonalization) section schematically shown in Fig. 7

where at each block-step a pair of ’new’ partial forward and

backward errors is updating the scheme.
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Fig. 8. The detailed structure of the nonlinear Schur parametrization of a
4-th order nonstationary stochastic process (n = 2).

B. Stationary (in a weak higher-order sense) case

1) Higher-order stationary stochastic processes: The

consequence of the (weak) fourth-order stationarity of

the observed process is shift-invariance of the inner-

products (for any σ): hi+σ,k+σ = (y−i+σ, y−k+σ) =
Ey−i+σy−k+σ = Ey−iy−k = (y−i, y−k) =
hik; hi+σ,k+σ,l+σ = (y−i+σ, y−k+σy−l+σ) =
Ey−i+σy−k+σy−l+σ = Ey−iy−ky−l = (y−i, y−ky−l) =
hikl; hi+σ,j+σ,k+σ = (y−i+σy−j+σ, y−k+σ) =
Ey−i+σy−j+σy−k+σ = Ey−iy−jy−k = (y−iy−j, y−k) =
hijk; hi+σ,j+σ,k+σ,l+σ = (y−i+σy−j+σ, y−k+σy−l+σ) =
Ey−i+σy−j+σy−k+σy−l+σ = Ey−iy−jy−ky−l =
(y−iy−j, y−ky−l) = hijkl; so that the generalized Hermitian

covariance matrix {2×2}H (3) becomes a generalized (block,

multi-indexed) Toeplitz matrix {2×2}C.

2) Nonlinear Schur-type parametrization algorithm: From

the above properties of higher-order processes it clearly fol-

lows that in the nonlinear stationary case we obtain ρk+σ
i+σ =

ρki , ρ
k+σ,l+σ
i+σ = ρkli , ρk+σ

i+σ,j+σ = ρkij and ρ
k+σ,l+σ
i+σ,j+σ = ρklij

regardless of the σ-shift. Taking in mind that the initializations

(i.e. the partial backward prediction errors, constituting the

ON basis of the estimation space) are actually the shifted

versions of the outcomes of the ’upper-wire’ of the previous

block-step (due to the shift-invariance of the inner-product),

we can confine the algorithm to the σ = 0 ’level’ of the

nonlinear Schur parametrization scheme only, as in the higher-

order stationary case there is no nesting between the σ-levels

anymore (similarly as in the linear stationary case). This is

illustrated in Figs. 9 and 11. Let us mention that the complexity

reduction implied by the higher-order stationarity can directly

be generalized to 2M -th order processes, and M -th degree

nonlinear Schur-type parametrization algorithms.
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Fig. 9. The detailed structure of the nonlinear Schur parametrization of a
4-th order stationary stochastic process (n = 2).
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Fig. 10. The block structure of the nonlinear Schur parametrization of a 4-th
order nonstationary stochastic process (n = 4).

C. Nonlinear complexity reduction

The number of hyperbolic rotations in the stationary second-

degree n-th order nonlinear Schur parametrization scheme

equals SNn
= 1

6
n(n + 1)(2n + 1) while the associated

hyperbolic rotations number in the nonstationary case is
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Fig. 11. The block structure of the nonlinear Schur parametrization of a 4-th
order stationary stochastic process (n = 4).

NNn
=

∑n

i=1 Sn. The nonlinear complexity reduction is

presented in Table 2.

Table 2: Nonlinear complexity reduction

Order No. of hyperbolic rotations Complexity reduction

n NNn
SNn

%

1 1 1 0

5 105 55 48

10 1 210 385 68

20 16 170 2 870 82

50 235 340 22 140 92

90 5 713 890 241 065 96

IV. CONCLUSION

The above results compare the Schur-type parametrization

algorithms for the nonstationary case (when higher-order co-

variances are actually generalized Hermitian matrices) versus

the stationary situation (when those matrices become gen-

eralized Toeplitz). In real life, however, we are often faced

with near-stationary signals (a good example is speech signal)

whose covariance matrices are ’close’ to Toeplitz (in a well-

defined sense) for which Schur parametrization algoritms com-

plexity is higher than in the stationary case, but considerably

reduced comparing to a ’totally’ nonstationary case. Two

approaches for second-order processes have been introduced

and are mentioned here: the approach based on the notion

of α-stationarity (see e.g. [8]) and the concept based on the

staircase matrix extension problem (see e.g. [3]). The second

approach has been generalized to higher-order processes in

[17], [18], [19] while the first one was our inspiration for

introducing of a class of ’p-stationary’ second-order processes

[21], [22] and the associated Schur parametrization and mod-

eling algorithms with reduced complexity. The ’p-stationary’

approach can straightforwardly be generalized for higher-order

processes with statistics being ’close’ to generalized Toeplitz

matrices. Taking an advantage of higher-order closeness to the

Toeplitz case, the corresponding class of nonlinear algorithms

(attractive in implementations) is the present direction of our

current research.
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