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Abstract—Deep learning networks have been successfully ap-
plied to solve a large number of tasks. The effectiveness of deep
learning networks is limited by the amount and the variety
of data used for the training. For this reason, deep-learning
networks can be applied in scenarios where a huge amount of
data are available. In music information retrieval, this is the
case of popular genres due to the wider availability of annotated
music pieces. Instead, to find sufficient and useful data is a hard
task for non widespread genres, like, for instance, traditional
and folk music. To address this issue, Transfer Learning has
been proposed, i.e., to train a network using a large available
dataset and then transfer the learned knowledge (the hierarchical
representation) to another task. In this work, we propose an
approach to apply transfer learning for beat tracking. We use
a deep BLSTM-based RNN as the starting network trained on
popular music, and we transfer it to track beats of Greek folk
music. In order to evaluate the effectiveness of our approach, we
collect a dataset of Greek folk music, and we manually annotate
the pieces.

I. INTRODUCTION

In the last decade, deep learning networks have been suc-
cessfully applied in a number of research fields, including
image and video processing, speech recognition and forensics,
greatly outperforming traditional machine learning techniques.
Deep learning techniques have reached high performance
thanks to their ability to decompose problems into subprob-
lems using several hierarchical layers of representation and
finding useful semantic patterns within data.

In Music Information Retrieval (MIR), deep learning has
been applied to several tasks, including automatic music clas-
sification [1], music structural analysis [2] and beat tracking.
With regard to the latter, several architectures have been
proposed [3], [4], [5], [6].

Deep networks require a huge amount of data to be effec-
tively trained, which might not be available. In the context
of MIR, this drawback is exacerbated by issues related to
music copyright and lack of annotated dataset. With regard
to beat tracking, some popular datasets include Beatles [7]
and Robbie Williams [8], which contain hours of annotated
musical excerpts mainly drawn from Pop Western genres.

The effectiveness of deep learning networks is also limited
by the variety of the data used to train them: networks trained
with a high variety of data is more prone to be effective
also on data that are dissimilar by those used in the training
[9]. Dataset composed by music of different genres are RWC
Dataset [10] and Ballroom dataset [11].

Nevertheless, acquiring large datasets with a high variability
is not always feasible. In MIR, this the case of non-popular
or traditional and folk music. Recently, the MIR community
has started addressing the MIR tasks with non-Western music.
With regard to beat tracking and rhythm analysis, in [12] the
authors investigate the occurrence of pulsations in free-rhythm
Turkish music, while in [13] they employ a Gaussian Mixture
Model to track beats from Cretan folk music.

However, adapting deep learning approaches to non-Western
music is still a complex process, due to the lack of available
datasets of proper size. A recent approach based on miming the
ability of human brain to address novel problems by applying
methods and knowledge acquired to solve similar problems in
different contexts [14] is effective for overcoming the need of
large datasets.

In deep learning, this means to use parameters of networks
designed and trained for a source task, in a network devoted to
a different task [14]. Thanks to this process, the network can
benefit from the large available datasets to build a hierarchical
representation of the input data, and then transfer the learned
knowledge to another task. This procedure, known in literature
as Transfer Learning, has been effectively used for different
tasks, including those related to MIR [15].

In this study, we propose an approach to apply transfer
learning for music beat tracking. We use the deep recurrent bi-
directional neural network based on Long Short-Term Memory
cells proposed in [4] as the starting network. We then employ
the learned parameters on a network designed for folk music
beat tracking. In order to evaluate the effectiveness of our
approach, we collect a dataset of Greek folk music, in which
we manually annotate the beat for each piece.

II. RECURRENT NEURAL NETWORKS: AN OVERVIEW

Recurrent Neural Networks (RNNs) are a family of neu-
ral networks specialized in modeling sequential data, which
makes them suitable to model the time-varying evolution of
musical properties. In this Section, we offer a brief overview of
the basic (Baseline) RNNs and the Long Short-Term Memory
(LSTM) cells we used in our study. For a more in-depth
discussion, please refer to [16].

A. Baseline Recurrent Neural Network

Given a sequence xt ∈ RN over a time index t, a RNN
aims at modeling its time evolution and generate hidden
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Fig. 1: General scheme of the algorithm.

units ht = σh (ht−1,xt; ) ∈ RH as a function σh of the
current sample xt and of the previous-sample ht−1, with
parameters θh. Doing this, the function recursively accesses to
past samples and hidden units, allowing the RNN to model the
evolution of the sequence. See Fig. 2a for a simple graphical
representation of a RNN unit.

RNNs are trained with the goal of learning the most
representative hidden units, given a desired output yt ∈ R, in
order to minimize a loss function L(yt, o(ht)), where o is an
output function that maps the hidden units into the predicted
output ŷt.

We can stack RNNs together in a deep architecture (shown
in Fig. 2c) to learn a hierarchical representation of the se-
quence that is effective to bridge the gap between low-level
input and high-level desired output. Given a network with L

layers, we compute the generic l-th layer’s units h
(l)
t as

h
(l)
t = σ

(l)
h

(
h
(l)
t−1,h

(l−1)
t

)
∈ RH

(l)

, with h
(0)
t = xt.

Each layer l learns a different parametrization θ
(l)
h . The

predicted output ŷt is computed from the top (and most
semantic) hidden layer’s output h

(L)
t or from the stacking of

several layers’ output, depending on the task.
A variation of RNN, named Bidirectional RNNs (BRNNs)

[17], exploits not only the past hidden values but also future
ones. In a BRNN, two sub-layers compose each layer, one
that learns ht given ht−1, and one that learns ht given
ht+1. Exploiting future information makes the BRNNs more
effective than RNN to predict a desired output, but limits their
applicability to offline (non-causal) tasks.

A severe issue prevents RNNs from learning an effective
multi-layer representation, namely the vanishing gradient [4],
i.e., the gradient of L decreases so much that the weights’
update stops. The LSTM cells [18] address this issue by using
an internal memory and using gates to weigh the contribution
of input and previous output to the memory, and of the output
of the network.

B. Long Short-Term Memory units

LSTM units introduce a cell state st that acts as a memory
for the unit, and three gates f , i and q, named forget, input
and output gates respectively, as scalars ranging between 0
and 1 to weigh the contribution from xt, ht−1 and st−1.
The forget gate ft is computed as ft = σf (xt,ht−1), using
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Fig. 2: A representation of two units of a deep RNN.

specific parameters θf ; the gates it and qt are computed
accordingly with parameters θi and θq , respectively. The
vector h̃t = σh(xt,ht−1), with parameters θh, is used to
update the state cell as st = ftst−1 + ith̃t by weighing the
contribution of the previous state (first addend) and of the input
(second addend). Lastly, the hidden units are computed by
weighing the contribution of the cell state as ht = qt tanh(st).

The training of deep bi-directional LSTMs (BLSTM) is
analogous to that of BRNNs, with the space of parameters
also including θf , θi, θq (Fig. 2b), hence increasing the
requirements in terms of training data.

III. PROPOSED APPROACH

In this work, we use a beat tracking algorithm similar to
the one proposed in [3] and [5], and we use transfer learning
to use the learned network on a different beat tracking task.
In Figure 1 we show the global schema of our approach.

Given an audio signal, we extract a perceptually-meaningful
time-frequency representation (Section III-A), which is the
input of the deep network (Section III-B). The network outputs
a likelihood that a beat occurs at a certain instant of the audio
signal. Since in music the sequence of beats follows some
rules given by the composition and the music theory, we add
a Dynamic Bayesian Network (DBN) (Section III-C) at the
top of the deep network in order to transform likelihoods to a
sequence of beat instants.

We train tracking algorithm, such as described in [3] and
[5] and we apply transfer learning such as described in Section
III-D.

A. Feature extraction

Given a generic audio signal x, we extract a sequence
of vectors xt with t = 1, ..., T . Following the approach
proposed in [19], we compute the log-magnitude STFT of the
signal with three different window sizes W1, W2 and W3, to
exploit the trade-off between frequency and time resolution.
In order for the frames to be comparable, we use a common
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hopsize. We filter the spectrograms using a bank of triangular
filters with a constant resolution per octave, to reduce the
number of components of the vector and extract a frequency
representation closer to human perception. We stack together
the three versions of the spectrogram and their first-order half-
rectified difference to compose the final sequence xt ∈ RN .
We then use it as the input of the network.

B. Network

We use a three-layer BLSTM-based RNN network followed
by a fully-connected (FC) layer to compute the output beat
activation ŷt = σo

(
h
(3)
t

)
as the probability that a beat

occurs at time t. We train the network using labeled annotation
yt = {0, 1} that indicates whether (yt = 1) or not (yt = 0) a
beat occurs at time t. The sequence ŷt ∈ [0, 1] ranges in the
continuous domain and is discretized into a set of beat instants
b = {b1, ..., bB} by the DBN.

C. Dynamic Bayesian Network

As done in [19], we use DBNs to track and model the
beat sequences. In the DBN, states zt are identified by two
variables: a measure of the tempo Φt and the position of the
beat within a bar Φ̇t. States can be imagined as in a grid
spanned by these two components. At each time instant t,
the transition model estimates the probability of a transition
between states P (zt|zt−1). Given the sequence of states z1:T ,
the probability sequence of transitions among states is:

P (z1:T |ŷ1:T ) ∝ P (z1)
T∏
t=2

P (zt|zt−1)P (ŷt|zk), (1)

where: P (z1) is the initial state distribution, usually initialized
as a uniform (equiprobable) distribution, and P (ŷt|zk) is the
observation model, which employs the beat activation as the
observable variable to guide the transitions.

Using the Viterbi algorithm [19], the most likely sequence
of transitions among states z∗1:T is computed as:

z∗1:T = {z∗1, . . . , z∗T } = arg max
z1:T

P (z1:T |ŷ1:T ). (2)

By looking at the transition of states occurring through z∗1:T ,
we obtain an indicator of the ranges where a beat is most likely
to occur. Within this ranges, beats are finally found as t where
ŷt is a local maximum.

D. Transfer Learning

Transfer learning aims to exploit the knowledge acquired
on a source task to perform a target task. This is consistent
with what happens in real life, where pre-existing knowledge
is used to process and understand new informations. We apply
inductive transfer learning to use a model previously trained
for a source task on a source domain, to perform a new
target task on the same source domain [14]. Therefore, we
use a parameter transfer learning, which assumes that network
coefficients are composed of two parts: one shared among
tasks and one task-specific [14].
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Fig. 3: Evolution of BPM for three pieces in the Greek folk
dataset.

Due to the nature of the network, the lower layers of RNN
learn a basic representation of the music rhythm, which can be
effectively used for the new task. The higher layers, instead,
tend to be more specialized and, for this reason, need to be
re-trained, as in [15].

In Figure 1, we detail the proposed approach. We first train
a RNN for the source task over a large database S, learning
the parameters Θ = {θ(l)

h ,θ
(l)
i ,θ

(l)
f ,θ

(l)
q ∀l = 1, 2, 3} ∪ θo.

We then copy found parameters into a target network with the
same architecture. Then, we use a smaller database T for the
target task, for the training of the top BLSTM layer (l = 3)
and of the fully-connected layer, whereas the lower two layers
do not update the weights (i.e., their weights are frozen).

IV. EXPERIMENTAL SETUP AND EVALUATION

A. Data Collection

The source dataset S we used in this study is the one
proposed in [4], here named Böck dataset. It is composed of
120 songs from the Ballroom set [11], some training and bonus
excerpts from the MIREX 2006 beat tracking contest1 and six
files from the set used in [20]. This dataset is used for training
the source network and learn the first set of parameters Θ.

The smaller target dataset T , named the Greek folk dataset,
is composed of 56 music pieces typically used in traditional
Greek folk dance. We asked traditional Greek music experts to
annotate them with their beat instants. The dataset is publicly
available2. T contains a wide variety of binary, ternary and
odd meters, which may also change throughout the same
piece. Moreover, musicians rarely use the metronome during
recordings and tempo fluctuation are extremely common. In
Fig. 3 we show some examples of BPM evolution over time
for three excerpts from the dataset; whereas in Fig. 4 we show
the distribution of song-level average BPM in the dataset.

Tempo fluctuations in T make the target task more challeng-
ing for a beat tracking approach that we trained over S, due to
the lack of non-steady examples to learn from. We highlight
the difference of tempo fluctuations between the two datasets
by computing the Median Absolute Deviation (MAD) over
inter-beat intervals ∆b = {b2 − b1, b3 − b2, ..., bB − bB−1},
where bβ is the generic beat instant and B is the total number

1http://www.music-ir.org/mirex/wiki/2006:Audio Beat Tracking
2http://home.deib.polimi.it/buccoli/dataset/BeatGreek.zip
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of beats. MAD is a robust measure of the variability of a
univariate distribution and it is computed as:

MAD = median (|∆b −median(∆b)|) .

The higher the MAD, the higher the variability of the inter-beat
intervals and, hence, the degree of tempo fluctuations. In Fig. 5
we show a comparison between the normalized distributions of
the annotations-based MADs in Böck and Greek folk datasets.
While the former exhibits a high and narrow peak over low
values of MAD, the latter is more skewed toward high values.

B. Setup

Given a generic monauralized PCM audio signal, re-
sampled at 44.1 KHz, we use a filterbank with six bands
per octave to filter the three STFTs with common hopsize
of 10 ms and three different windows sized W1 = 1024,
W2 = 2048 and W3 = 4096 samples, obtaining 39, 45 and
49 components per frame, respectively. Considering also the
first order difference of the spectrograms, we obtain N = 266
input units.

We follow the RNN setup described in [4]. In order to
augment the number of training examples we divided the
training set into 10-second batches, and we use an early stop
approach with 20 epochs. We implemented the deep neural
network using Keras [21].

In this work, we investigate whether a source network
trained for beat tracking of a general-purpose dataset is able to
transfer its knowledge to a target network for beat tracking on
a specific dataset. For this reason, we compare the performance
of three models derived from the source network: 1) the source
network, as described [4], trained over the Böck dataset; 2)
the target network TL Freeze, obtained using transfer learning
only on the higher two levels (one BLSTM and one fully-
connected), as described in Sec. III-D, and trained on the
Greek folk dataset; 3) a network trained only with the Greek
folk dataset, named No TL.

We trained all models but No TL with all the pieces in S;
then, we randomly picked 60% of T to train all models but
the source network, and we left the remaining 40% for the
evaluation.

C. Evaluation

The MIR community agrees that, given the complexity of
the problem to address, it does not exist a unique metric
able to capture all the aspect needed to evaluate effectiveness
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Fig. 5: Comparison of the distributions of MAD in Böck and
Greek Folk datasets.

of beat-tracking methods. For this reason we evaluate the
performance of the three aforementioned networks using a
set of well-known metrics for beat-tracking [7]: F-measure,
P-score, Cemgil measure, all the continuity-based metrics
(Correct Metrical Level CML and Allowed Metrical Level
AML, in both variants: continuous and total) and average
Information Gain (info gain).

In Table I we report the result of the evaluation on the Greek
folk dataset. The basic case of our experiments is the one we
called the source network where the network obtained good
results even if no Greek folk music was part of the training
set. We obtained similar scores in the case where the network
was only trained using Greek folk music (no TL). This is
predictable since in the former case the network had no idea
about Greek folk music, in the latter case, instead, the network
tends to overfit on the training set, which in our case is very
small, and is not able to generalize. Let the reader notice that
in no TL, continuity-based CMLc and AMLc metrics obtained
a very low value. We assume that, due to the limited training
dataset, no TL is not able to correctly track beats for wide
temporal regions in the musical piece.

Using the proposed method based on transfer learning, as
expected, we obtained a significant improvement. In the TL
Freeze case, indeed, for all the metrics we obtained an average
improvement of about 6%.

In order to prove the effectiveness of our method we also
performed preliminary tests on the SMC dataset, which is
well-known to be extremely challenging for beat tracking
algorithms [9]. In this tests we kept the three networks (TL
Freeze, source network, no TL) unchanged, using the SMC
only as the test set. In Table II we report the result on SMC
dataset. For comparison, we also add the results achieved by
[19] with a similar network trained over the SMC dataset.

Here it is possible to notice the positive effect of using
transfer learning, while the improvement is not as relevant as
in the previous scenario. However, the performance is still far
from those obtained by a network trained over the specific
dataset, as in [19].

Despite to perform beat tracking on the Greek dataset is an
hard task, the SMC seems to be more challenging, as expected,
and the result are much lower with respect to the previous
cases.
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TABLE I: Evaluation result on Greek dataset

F-measure P-score cemgil CMLc CMLt AMLc AMLt info gain

TL Freeze 0.640 0.645 0.574 0.495 0.509 0.752 0.780 0.555
Source Network 0.572 0.586 0.511 0.421 0.435 0.706 0.744 0.529
No TL 0.584 0.620 0.516 0.278 0.445 0.475 0.685 0.383

TABLE II: Evaluation result on SMC dataset

F-measure P-score cemgil CMLc CMLt AMLc AMLt info gain

TL Freeze 0.388 0.506 0.309 0.268 0.286 0.437 0.472 0.416
Source Network 0.374 0.488 0.298 0.221 0.234 0.367 0.399 0.369
No TL 0.368 0.506 0.298 0.187 0.253 0.263 0.378 0.183

Krebs [19] 0.543 - 0.431 - 0.458 - 0.613 1.578

V. CONCLUSIONS

In this work, we presented an application of transfer learning
for beat tracking task, from a general-purpose to a narrow
specific case. For the sake of evaluation, we collected a dataset
of 56 Greek folk pieces annotated with the corresponding beats
instants by experts. Performance achieved by the networks
shows that the transfer learning is effective in re-tuning a
RNN’s parameters to track rhythmically-challenging music
pieces.

We intend to continue the investigation on transfer learn-
ing for beat tracking exploring wider diversity across music
genres. Moreover, together with the music pieces, we also
collected a dataset of motion-capture movements of the Greek
folk dataset. Future work includes an investigation of auto-
matic approaches for tracking beats from dance motion.
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[3] S. Böck, F. Krebs, and G. Widmer, “Joint beat and downbeat tracking
with recurrent neural networks.” in Proc. of the 17th Interational Society
for Music Information Retrieval (ISMIR) conference, 2016.
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