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Abstract—Computation caching is a novel strategy to improve
the performance and the quality of service of mobile edge cloud
networks. It consists in storing in local memories situated at
the edge of the network, here mobile access points, the already
processed results of computations that users offload to the mobile
edge cloud. The goal of this technique is to avoid redundant
and repetitive processing of the same tasks, thus streamlining
the offloading process and improving the exploitation of both
users’ and network’s resources. In this paper, three different
computation caching policies are proposed and evaluated. They
are based on three main parameters: the popularity of offloadable
tasks, the size of their inputs, and the size of their results.
Numerical simulations show that good policies need to take into
account these three parameters altogether.

I. INTRODUCTION

The future of mobile communications will be characterized
by ubiquitous connection availability, very dense networks,
ultra-low latency, and energy efficiency. The exchange of data
and information will be extremely fast, copious, and secure.
The 5G network revolution will be enabled by cutting-edge
technological innovations, concerning millimeter-wave radio
communications, baseband and RF architecture, resources
virtualization, and much more. A game-changing idea con-
sists in empowering network mobile terminals with intensive
data elaboration and storage capabilities, thus bringing cloud
support the closest possible to users. This paradigm is called
Mobile Edge Cloud (MEC) [10], [11], [21]. A rich research
current focuses on techniques for optimizing allocation and
exploitation of MEC resources, usually divided into three
main categories: communication, computing, and caching re-
sources [2], [3], [13], [14], [16], [19], [21].

In MEC networks, Serving Small Cells (SSCs) endowed
with radio access technology, computing units, and local cache
memories can be charged by User Equipments (UEs) to run
computing tasks on their behalf. The procedure of entrusting
these computational assignments to small cells is called task
or computation offloading. It allows UEs to save both time
and energy and revolutionizes the classical interaction between
UEs and mobile terminals.

The role of content caching in MEC networks is critically
important and deeply investigated [1], [4], [7], [21]. In the
context of task offloading, a new form of caching was recently
introduced, after noticing the pointlessness of repeating many
times the same computation for the same reiterated offloading
request. This paradigm is called computation caching [15],
[17], [18] and suggests to exploit small cells’ memory to

store the results of offloadable computations [6], so that they
can be simply retrieved from the cache instead of being
recomputed each time they are requested. The goal is to
decimate redundant and repetitive processing and has several
advantages, e.g., drastically reducing computation time and
saving energy for both UEs and SSCs, preventing uplink
bottlenecks, freeing network resources and decreasing the
SSCs’ workload, diminishing the number of virtual machine
instantiations. The consequent resource gains can be reinvested
to optimize the network performance and increase users’
satisfaction. Although computation caching can be applied to
several aspects of 5G-and-beyond networking, in this paper
we focus on the interaction between a single UE and its SSC.
This is the first fundamental stage on which to build scenarios
with more users, more small cells, and complex interactions
among them [14], [16].

The goal of this paper is to introduce, evaluate, and compare
three different computation caching policies that depend on
task popularity. These policies are enablers for proactive
computation caching [6], intended as the strategy of dynami-
cally adapting the content of cache memories, based on the
continuous learning of task popularity and other statistics.
The leading concept is that future offloading traffic can be
predicted and computation caching can be proactively adjusted
to smoothly react to traffic fluctuations. The goal of this paper
is not to describe how to learn and predict task popularity, but
rather to show how it can be exploited to design efficient and
effective computation caching policies.

An important novelty of this work is the introduction of
a policy that simultaneously takes into account three different
characterizing parameters of an offloadable task: its popularity,
the size of its input, and the size of its result. In particular, this
last parameter plays a crucial role: in computation caching, the
size of the data to cache and to download (the task result) can
be significantly different from the size of the data to upload
from the UE to the SSC (the task input). This marks a sharp
difference with classical content caching, in which cached data
essentially have the same size of the corresponding data trav-
elling through the network. Our main contribution is to show
that this difference can be exploited to significantly improve
the effectiveness of computation caching. With Lemma 1, we
also mathematically characterize the optimal caching policy
when the costs of uploading and elaborating the input data
are proportional to their size and all the task results have the
same standard size.
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In Section II, we describe the system model and fix some
notation. Then, three computation caching policies are for-
mally defined in Section III and numerically evaluated in Sec-
tion IV. Some concluding remarks are outlined in Section V.

II. SYSTEM MODEL

In our setting, a UE offloads computational tasks to the
MEC via its SSC. The communication rates are denoted RUL

in uplink and RDL in downlink and are measured in bits per
second. We suppose that the computational capacity of the
SSC is f CPU cycles per second and that the SSC can store up
to m bits to perform computation caching on a local memory.

Offloadable tasks belong to a finite set C = {c1, . . . , cK},
that we call the computation catalogue. A task ck ∈ C is
represented by a triplet: ck = (Wk, ek,W

′
k), where Wk is

the input data (a sequence of bits) to be processed, ek is the
number of CPU cycles per bit needed to elaborate the data,
and W ′k is the computation result (another sequence of bits).
We denote |Wk| and |W ′k| the sizes in bits of Wk and W ′k.

Definition 1 (Cache Indicators): We call cache indicator the
vector σ = (σ1, . . . , σK) ∈ {0, 1}K such that σk = 1 if and
only if the result W ′k of ck ∈ C is stored in the SSC’s cache.
Thus, a cache indicator fully identifies the cache content.

Definition 2 (Feasible Cache Indicators): Since the cache
size is limited to m bits, in general not all vectors in {0, 1}K
correspond to a feasible cache configuration. Therefore, we
define the set of feasible cache indicators as follows:

F =

{
σ ∈ {0, 1}K :

K∑
k=1

σkW
′
k ≤ m

}
.

Task offloading starts with a request from the UE to the SSC
specifying the task to run and a time delay within which the
UE needs to retrieve its result. Such an offloading request is
denoted r = (k, t), meaning that the UE asks for the execution
of the k-th task and to receive its result within t seconds. If
the SSC has enough available resources to elaborate the task,
the request is accepted, otherwise it is denied.

Our goal is to describe strategies to reduce the costs of tasks
offloading. The total cost of the offloading procedure is made
of several independent contributions, among which we identify
two main components: i) the cost of uploading the computation
inputs from the UE to the SSC; ii) the cost of running the
computation at the SSC. Depending on the application, the
word “cost” can indicate energy consumptions, time delays,
or any other metric that measures an expense or the quality of
service. Nonetheless, in all scenarios, there are evident benefits
in keeping available in the cache memory a computation result
before it is requested to the SSC: indeed, whenever a result
W ′k is stored, the task ck does not need to be run, its input data
do not need to be uploaded, and W ′k can be straightforwardly
sent to the UE. The most important consequence is that the
two cost components mentioned above are zeroed. Hence, the
total cost of offloading a cacheable task ck ∈ C is:

Γtot(ck) = Γreq(ck) + (1− σk) (ΓUL(ck) + Γcomp(ck))

+ ΓDL(ck) + γ(ck), (1)

where Γreq(ck) is the cost of sending r = (k, t), the offloading
request; σk is the k-th entry of the cache indicator; ΓUL(ck)
is the cost of uploading the input data; Γcomp(ck) is the cost
of computing the task result (assuming, for simplicity, that
the CPU state does not vary in time and the computation
cost only depends on the task parameters); ΓDL(ck) is the
cost of sending the result back to the UE; and γ(c) includes
any other fixed cost that does not directly depend on c, e.g.,
any fixed processing cost at the MEC level or the cost of
maintaining active the SSC’s hardware, including the cache
memory. The cost of reading a task result from the cache is
considered negligible.

III. POLICIES FOR COMPUTATION CACHING

The previous considerations lead to the main question of
this work: given a cache of finite size, how to choose which
W ′k’s to store, with the goal of minimizing the overall costs?
To answer, let us consider R offloading requests r1, . . . , rR,
sent from the UE to the SSC during its service period.
By definition, every request uniquely corresponds to a task:
for every i = 1, . . . , R, we have ri = (k, ti), for some
k ∈ {1, . . . ,K} identifying a task in C and some latency
constraint ti. Thus, Γtot(ri) = Γtot(ck) for some k and we
define the cost over the whole serving period as:

Γ(σ) =
R∑
i=1

Γtot(ri). (2)

Our goal is to find the cache indicator that minimizes Γ(σ):

σopt = arg min
σ∈F

Γ(σ) = arg min
σ∈F

(
R∑
i=1

Γtot(ri)

)
. (3)

Ideally, if σopt is known, the SSC guarantees an optimal cost
minimization by storing the W ′k’s for which (σopt)k = 1.

Since the number of cache indicators grows exponentially
with K, it is not always algorithmically possible to run through
all of them to exhaustively determine σopt. The scope of this
paper is to propose and evaluate strategies to choose cache
indicators with close-to-optimal associated performance. A
very natural choice is to assign a hierarchy among tasks and
to fill the cache with the results of the highest-priority ones.

Definition 3 (Caching Metrics and Policies): A caching
metric λ : C → R+ assigns to each task a “cacheability
value”. The caching policy based on λ is the application of the
following cache filling algorithm, that prioritizes the tasks with
the highest cacheability value:

1: Let π : {1, . . . ,K} → {1, . . . ,K} be a permutation such
that λ(cπ(1)) ≥ . . . ≥ λ(cπ(K)).

2: Set σ ← (0, 0, . . . , 0) and s← 0.
3: for k = 1, . . . ,K do
4: if s+ |W ′π(k)| ≤ m, then
5: set σπ(k) ← 1 and s← s+ |W ′π(k)|.
6: end if
7: end for
8: Fill the SSC’s cache according to σ.
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We call σ(λ) the indicator yielded by the previous algorithm.
Clearly, a caching policy is based on a well-designed metric
if Γ(σ(λ)) is close to Γ(σopt). A first observation, very spon-
taneous and common to the context of content caching [7]–
[9], [12], [20], is that a good caching policy needs to depend
on the popularity of tasks. Indeed, to reduce costs, we want
to avoid to repeatedly process frequently requested tasks. In
this perspective, we define the popularity pk of task ck to be
the probability that ck is offloaded to the SSC. In our setting
(and, in general, whenever the offloading requests are pairwise
independent and if their total number R is big enough to be
statistically representative), we can write:

pk = |{i : ri = (k, ti),∃ ti}| ·R−1. (4)

First policy: simply based on task popularity, we define:

λ1(ck) = pk, ∀k ∈ {1, . . . ,K}.

λ1 is essentically the metric used in [6]. A better choice comes
from the observation that caching the result of a very popular
task with low input uploading and computation costs, can be
less advantageous than caching the result of a less popular
task with higher costs. The latter directly depend on the size
(in bits) of Wk, denoted |Wk|, which justifies the next policy.
Second policy: based on popularity and input data size, let

λ2(ck) = pk|Wk|, ∀k ∈ {1, . . . ,K}.

In some scenarios, the previous policy is optimal:
Lemma 1: Let us suppose that, for every k ∈ {1, . . . ,K},

ΓUL(ck) = a|Wk| and Γcomp(ck) = b|Wk|, (5)

for some constants a, b > 0. Let us also suppose that the
computation results have all a standard output size, i.e.,
|W ′k| = w, for every k ∈ {1, . . . ,K}. Then, σ(λ2) = σopt.

Proof: Let us call ρk = |{i : ri = (k, ti), ∃ ti}|. Hence,
by (2) and (4), we have

Γ(σ) =
R∑
i=1

Γtot(ri) =
K∑
k=1

ρkΓtot(ck) = R
K∑
k=1

pkΓ(ck).

Now, all the addends in (1) that do not depend on σk do not
influence the minimization that defines σopt in (3). Therefore,

σopt = arg min
σ∈F

(
−R

K∑
k=1

pkσk(ΓUL(ck) + Γcomp(ck))

)
.

Using (5), we obtain:

σopt = arg min
σ∈F

(
−R(a+ b)

K∑
k=1

pkσk|Wk|

)

= arg max
σ∈F

(
K∑
k=1

pkσk|Wk|

)
. (6)

When |W ′k| = w is constant, the cache can store at most
bm/wc computation results, independently from k. So,

F =

{
σ ∈ {0, 1}K :

K∑
k=1

σk ≤
⌊m
w

⌋}
.

TABLE I
PARAMETERS FOR NUMERICAL SIMULATIONS

Parameter Value Parameter Value

K in Fig. 1 25 K in Fig. 2, 3, 4 50000

RUL 125 Mbit/s |Wk| in Fig. 1 [1e6 : 1e9[ bits

RDL 500 Mbit/s |W ′k| in Fig. 1 [1e6 : 1e7[ bits

α 0.6 |Wk| in Fig. 2, 3, 4 [1e6 : 1e9[ bits

ek/f 10−8 s/bit |W ′k| in Fig. 2, 3, 4 [1e3 : 1e9[ bits

Consequently, the summation in (6) is maximized when
σk = 1 for the bm/wc tasks with the highest pk|Wk|. This
is equivalent to fill the cache based on the second policy.
Therefore, σ(λ2) = σopt.
In this context, λ2 corresponds to the metric used in [18],
where it was already highlighted the need for a policy that
mixes popularity and input data size.
Third policy: the hypothesis that computation outputs have
standard constant size cannot be realistic for all applications.
The third policy is based on the observation that caching task
results whose size is small allows to store more of them.
Hence, it may be more convenient to cache a high number
of small-size results, even if their popularity and input size
do not maximize λ2. To increase the caching priority of tasks
with small |W ′k|, we define:

λ3(ck) = pk|Wk||W ′k|−1, ∀k ∈ {1, . . . ,K}.

The introduction of λ3 is one of the novelties of this work. We
will show in the next section that it is the most advantageous
metric of the three, from several points of view.

IV. NUMERICAL RESULTS

In our numerical simulations, |Wk| and |W ′k| are chosen
independently at random for every k as follows: let y, Y ∈ N
satisfy y ≤ Y and let x,X ∈ R be two real numbers in [1, 10]
(with x ≤ X if y = Y ). When we say that |Wk| belongs
to [xey : XeY [, we mean that x · 10y ≤ |Wk| < X · 10Y

and |Wk| = u · 10v , with u and v randomly fixed as follows:
first, v is chosen uniformly in {y, y + 1, . . . , Y }; then, u is
chosen uniformly either in [x, 10[ (if v = y) or in [1, 10[ (if
y < v < Y ) or in [1, X[ (if v = Y ). The same rule is used
for |W ′k|, independently from the corresponding |Wk|. With
this strategy, there is no privileged order of magnitude among
the values taken by |Wk| and |W ′k|, even when the maximum
possible value is much bigger than the minimum.

In all figures, the abscissae represent the SSC’s cache size.
0 % means that m = 0 and 100 % that m =

∑K
k=1 |W ′k|.

Fig. 1, 2, 3, and 4 were obtained with the simulation param-
eters specified in Table I. In particular, we considered stable
radio channel conditions and constant uplink and downlink
communication rates. First, the cache was filled applying one
of the policies defined in Section III, then a high number of
offloading requests were simulated. We supposed the popu-
larity of offloading requests to obey the Zipf law [4], [5]:
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Fig. 1. Spared input data for K = 25.

pk = (Akα)−1, for constant α and A =
∑K
k=1 k

−α. Notice
that, without loss of generality, tasks can be assumed to be
sorted in the catalogue by descending popularity.

The simulated offloading operation consisted of four main
serial steps: offloading request, input data uploading, task
computation, results downloading. If the results of the com-
putation were found in the SSC’s cache, data uploading
and task computation were skipped and the results directly
sent to the UE. In all simulations, we assumed that a new
offloading request was sent instantaneously after the results of
the previous one were downloaded.

Fig. 1 shows, as a function of the cache size, the percentage
of task input data that did not need to be uploaded nor
elaborated because the corresponding results were cached
and available for downloading. For brevity, we call this the
“spared input data”. Measuring the spared input data is an
effective approach to evaluate the goodness of the caching
policies: the more it is, the higher the corresponding saving in
energy, time, or any other metric, both for the UE and for the
SSC. Differently from the other figures, in Fig. 1 we could
compare the performance of the policies also with respect
to the optimal cache configuration found by exhaustively
looking for σopt among all feasible cache indicators. This
was practicable because we kept the number of tasks in the
catalogue small enough (K = 25). Fig. 1 suggests two main
considerations: first, that the second and third policy clearly
outperform the policy exclusively based on popularity; second,
that the performance of the third policy is always very close or
superimposed to the optimal and beats the policy based on λ2,
especially for cache sizes between 0 and 20 %. These are the
sizes which interest us the most, because an effective caching
strategy needs to achieve a good performance with a cache
as small as possible. The curves in Fig. 1 are not extremely
smooth. The “jumps” reflect the fact that a small increase in
the cache size may suddenly allow to fit in the cache task
results with good metric, but “relatively too big” to be cached
before. This behaviour is more visible when K is small.

Fig. 2 shows the spared input data for K = 50000. In
this case, the optimal performance could not be traced, but
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the quality of the third policy is clearly confirmed by the
separation among the curves. Remarkably, for a cache only
as big as 2 % of the total size, the third policy allows to spare
more than 80 % of the input data, whereas the first and second
policy respectively achieve around 20 and 30 %.

Fig. 3 compares the policies in terms of cache hit ratio:
by definition, this is the number of times that the results
of the offloading requests were found in the cache, divided
by the total number of requests. The figure suggests two
observations: first, that weighing the task popularity by the
cache input size to define λ2 causes a loss in the cache hit ratio
performance; this is quite natural, because λ1 is by design a
metric aimed at maximizing the cache hit ratio. Nonetheless
and more importantly, this loss is completely recovered and
even outdone by the third policy, which promotes for being
cached the tasks with small-size results. We deduce that storing
in this way more results, even if they do not correspond to the
most popular tasks in absolute, yields a considerable gain: the
other two policies are beaten and cache hit ratios of almost
60 % are obtained with the third policy when the cache size
covers only 1 % of the total cacheable data (a performance
from 4 to 7 times better with respect to the other two policies).
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Fig. 4 shows the ratio between the average number of of-
floaded tasks per hour with and without computation caching.
Measuring this gain involves the computation of the offloading
time for every request. In the notation of Section II, where
in this case Γtot(ck) indicates the total offloading time of
ck = (Wk, ek,W

′
k), we have Γreq(ck) = 128/RUL (where

we supposed that a request ri = (k, ti) has a standard size of
16 bytes), ΓUL(ck) = Wk/RUL,Γcomp(ck) = ekWk/f , and
ΓDL(ck) = W ′k/RDL. We also added to the previous terms a
latency of 2 ms, corresponding to γ(ck). Fig. 4 reasserts the
superiority of the third policy, which allows gains of up to a
factor 10 for cache sizes of less than 20 %, whereas the gain
with respect to the other policies does not go beyond a factor
4. These gains translate into reduced uplink transmissions and
facilitate the prevention of uplink bottlenecks.

V. CONCLUSION

In this paper, we focused on the study, evaluation, and
benchmarking of policies for proactive computation caching.
We proposed a new caching metric and proved the importance
of considering the size of offloadable task results for designing
well-performing policies. We measured the effectiveness of
our proposal via three different performance metrics: the
“spared input data” percentage, the cache hit ratio, and the gain
in the number of satisfied requests per hour. Our policy showed
appreciable results for small cache sizes in all simulations, not
only compared to the scenario in which computation caching
is not performed, but also with respect to the other policies.

Future work will focus on the extension of our results to
more complex scenarios, involving more UEs and more small
cells. Building on the results of this paper, we will amplify
the benefits of computation caching by combining it with
the clustering gain obtained through federation of small cells
with embedded intelligence. These techniques need a specific
redesign of policies for cache filling and update.
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