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Abstract—A recent trend in color image processing combines
the quaternion algebra with dictionary learning methods. This
paper aims to present a generalization of the quaternion dictio-
nary learning method by using the octonion algebra. The octonion
algebra combined with dictionary learning methods is well suited
for representation of multispectral images with up to 7 color
channels. Opposed to the classical dictionary learning techniques
that treat multispectral images by concatenating spectral bands
into a large monochrome image, we treat all the spectral bands
simultaneously. Our approach leads to better preservation of
color fidelity in true and false color images of the reconstructed
multispectral image. To show the potential of the octonion based
model, experiments are conducted for image reconstruction and
denoising of color images as well as of extensively used Landsat
7 images.

Index Terms—Dictionary learning, Sparse representations, Oc-
tonions, Multispectral imaging, Landsat 7

I. INTRODUCTION

In the last two decades, the sparse representation model
showed remarkable results for different image processing
tasks. Many image and video processing problems benefit from
the sparse representation model. The goal is to represent a
given signal as a linear combination of only a few elements
from the typically overcomplete set known as the dictionary.
There are different ways of choosing a dictionary which best
suits our needs. A first approach would be to use predesigned
transform matrices such as overcomplete wavelets or curvelets,
but although these dictionaries yield sparse representation of
signals, dictionaries learned and trained on a set of represen-
tative examples are capable to give better results. The widely
applied method for learning the dictionary is the so-called K-
SVD method [1]. Most dictionary learning methods as well
as K-SVD, usually treat image patches as one-dimensional
vectors, by stacking all the pixels into a single column vector,
and then concatenating all the bands, regardless on the number
of spectral channels that image has. In this way also multispec-
tral and hyperspectral images are treated as large monochrome
images so the interrelationship between the spectral channels
is neglected.

Altough the quaternion algebra has been used for decades in
computer graphics, robotics, signal representation and analysis
[2], recently it was combined with standard dictionary learning
techniques [3], [4]. More preciselly, since three imaginary
units are well suited for representation of three color channels

(R, G and B), the ideas of the Orthogonal Matching Pursuit
method (OMP) [5], [6] for sparse coding as well as of K-SVD
for dictionary training, were generalized to the quaternion
setting in [3], [7] and are known as QOMP and K-QSVD. This
approach showed extraordinary results in color image process-
ing in terms of color fidelity, for different tasks such as image
reconstruction, denoising, inpainting and super-resolution [3]
as well as for color face recognition [4]. However, the existing
quaternion-based approach is not applicable to images with
more than three bands, e.g. multispectral images.

Motivated by the remarkable results obtained by the quater-
nion algebra for color image processing, here we extend the
method of [3] with the usage of the 8-dimensional octonion al-
gebra. The octonion algebra was developed for solving certain
physical problems, and due to its property of non-associativity
found its application in different fields such as exceptional Lie
groups [8] and special relativity [9]. Application in analysis
of analytic signals can be seen in [10] and a nice review of
applications in physics can be found in [11]. The recovery
of octonion signals from incomplete and noisy measurements
has been addressed in [12]. To the best of our knowledge, our
paper is the first one to report dictionary learning based on
the octonion algebra.

Apart from finding the suitable algebraic structure that will
generalize the quaternion model to a higher number of spectral
bands, we aim at better preserving the spectral fidelity in
the reconstructed image than the standard K-SVD model.
The key idea in our approach is to represent multispectral
image patches with 7 spectral channels as octonion signals.
For more than 7 spectral channels, a dimensionality reduction
technique can be applied which reduces the problem to a
form for which our method is applicable. For a given set of
training examples, where each example is an octonion signal,
we learn the dictionary and find the sparse code in the form
of octonion matrices by extending the standard Orthogonal
Matching Pursuit (OMP) method [5], [6] and the Approximate
K-SVD method [13] to the octonion setting. We name the
method Octonion Dictionary Learning (ODL) and validate it
for the reconstruction and the denoising of color and Landsat
7 satellite images.

The organization of the paper is as follows. In Section II we
give the preliminaries about the octonion algebra which will
be useful in order to derive the octonion sparse representation.
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This follows in Section III together with the problem formu-
lation. Section IV introduces the main novelties in our ODL
model. In Section V we present experimental results which
were validated on color and Landsat 7 images. Section VI
concludes the paper.

II. PRELIMINARIES

A. Algebra of octonions
The octonions are an 8-dimensional unital, distributive

algebra over R with basis {1, e1, e2, e3, e4, e5, e6, e7} where
1 is the multiplicative identity and ei, i ∈ {1, . . . , 7} are
imaginary units that satisfy e2i = −1, with the multiplication
rules between the basis elements given in Table I.

TABLE I
MULTIPLICATION RULES BETWEEN BASIS ELEMENTS.

1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

In order to introduce an octonion sparse model we will need
the following algebraic properties of the octonion algebra. If
x ∈ O is an octonion then it can be written as

x = x0 + x1e1 + · · ·+ x7e7 = x0 +

7∑
i=1

xiei

where each xi ∈ R. The conjugate of an octonion is defined
as x = x0 −

∑7
i=0 xiei and the norm is introduced as

|x| =
√
xx =

√
xx =

√
x20 + · · ·+ x27. (1)

The octonions are also a division and a composition algebra
which means that |xy| = |x||y| holds for all x, y ∈ O.
It is important to stress that the octonion algebra is non-
commutative and non-associative. This means that for arbitrary
x, y, z ∈ O : xy 6= yx and x(yz) 6= (xy)z. However, in
general it holds that xx = xx, for every x ∈ O. More about
octonions and their applications can be found in [11].

B. Octonion vectors and matrices
To treat multispectral images with up to 7 spectral channels

we will need to introduce octonion vectors and octonion
matrices. The non-associativity complicates vector analysis
over O, as we will see in the sequel.

The octonion vector x ∈ On×1 is a vector where each entry
is an octonion. Often it will be useful to write it as

x = x0 + x1e1 + . . .x7e7 (2)

where now each vector xi ∈ Rn×1 for i = 1, . . . , n. Similarly,
the octonion matrix A = [aij ]

m,n
i,j=1 ∈ Om×n is a matrix with

entries in O. Also, we can write it as

A = A0 +A1e1 + · · ·+A7e7, (3)

where each Ai ∈ Rm×n, for i = 0, . . . , 7.
The conjugation can be extended to vectors and matrices.

The conjugate transpose matrix of a matrix A = [aij ]
m,n
i,j=1 ∈

Om×n is defined as

A∗ = [aji]
n,m
j,i=1 ∈ On×m.

The inner product can be introduced as a function 〈·, ·〉 : On×
On → O given by 〈x,y〉 = x∗y =

∑n
i=1 xiyi. Then, for

an octonion vector x ∈ On×1 we can define its norm by
‖x‖2 =

√
x∗x =

√∑n
i=1 |xi|2 where xi, i = 1, . . . , n are the

entries of the vector x. The Frobenius norm of an octonion
matrix A = [aij ] is given by ‖A‖F =

√∑m
i=1

∑n
j=1 |aij |2.

Since octonions are non-associative there is no real matrix
representation that can faithfully represent them. However,
we can use the so-called pseudo-real matrix representation
as introduced in [14], [15] which is suitable for our work
because it represents matrix-vector multiplication. If x =
x0 +

∑7
i=1 xiei ∈ O is an octonion then we define the real-

vector representation ν(x) ∈ R8×1 as ν(x) = [x0 x1 . . . x7]
T .

In this way the real-linear isomorphism ν : O → R8×1 is
obtained. Similarly, we can define matrices Cj ∈ R8×8 for
j = 1, . . . , 7 by the property

Cjν(ek) = ν(ejek), k = 0, . . . , 7. (4)

Then from Table I we can easily conclude that for every j =
1, . . . , 7 there holds C2

j = −I, where I is the identity matrix.
Then the real linear, injective map χ : O → R8×8 can be
defined as

χ

(
7∑

i=1

xiei

)
= x0I +

7∑
i=1

xiCi. (5)

After expanding the expression on the right in (5) we obtain
a matrix with columns that are mutually orthogonal vectors.

The same maps can be extended to octonion vectors and
matrices. If we use the same notation for maps ν and χ that
act on entries of the vectors and matrices, respectively, then
we are able to define multiplication between octonion vectors
and octonion matrices by using the real matrix multiplication.
Indeed, for every A ∈ Om×n and every x ∈ On×1 it holds
that

ν(Ax) = χ(A)ν(x). (6)

Note that for x ∈ On×1 it holds

‖x‖2 = ‖ν(x)‖2. (7)

The proofs of all the matrix representations presented here can
be found in [14], [15].

III. PROBLEM FORMULATION

A. Octonion representation of multispectral images

Let y be an
√
m ×

√
m image patch extracted from a

multispectral image with up to 7 channels which is then
transformed into an octonion column vector of size m × 1.
The octonion algebra is well suited for the representation of
this image patch since every spectral channel can be assigned
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to one of the seven imaginary units e1, . . . , e7. This image
patch is then treated as an octonion vector y ∈ Om×1 which
can be represented as

y = 0 + y1e1 + · · ·+ y7e7, yi ∈ Rm×1, (8)

so every channel of this patch is the real vector yi ∈ Rm×1.
Note that this representation is a generalization of the quater-
nion representation model introduced in [3], [7] that was used
for RGB color images. Indeed, if y4, . . . ,y7 are zero vectors
then we have only three imaginary units which represent, e.g.
R, G and B color channels.

B. Sparse coding and dictionary learning problems

The goal of octonion sparse coding is to represent a given
octonion signal i.e. a signal given as an octonion vector y ∈
Om×1 by the linear combination of only a few elements from
a redundant (overcomplete) set D = {dk}mk=1 ∈ Om×n which
is called a dictionary and whose columns dk are unit norm
vectors known as atoms. Thus if the dictionary D is given, the
aim is to find the L-sparse vector of coefficients x ∈ On×1

known as the sparse code such that ‖x‖0 ≤ L and

y ≈ Dx, (9)

where L = const. is the prescribed number of non-zero
octonion elements in the octonion vector x, i.e. the sparsity
level. The pseudo-norm `0 just counts the number of these
non-zero elements of the given vector and the goal is to solve
the sparse coding problem

x̂ = argmin
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ L. (10)

If we are provided with a set of training samples i.e. the
set of octonionic signals Y = {yk}pk=1 ∈ Om×p, then the
dictionary learning problem consists of finding the dictionary
D ∈ Om×n, which best adapts to the given training set Y, and
the sparse code X = {xk}pk=1 ∈ On×p such that Y ≈ DX.
The dictionary learning problem can be formulated as the
following minimization problem

{D̂, X̂} = argmin
D,X

{‖Y −DX‖2F }

s.t. ‖xk‖0 ≤ L, k = 1, . . . , p. (11)

IV. PROPOSED METHOD

A. Sparse coding step

The problem formulated in (10) can be seen as a genera-
lization of the complex and quaternion sparse coding problems
[16]. Indeed, in the expanded form we see that the coefficient
matrix after multiplication is given as in (5) and that the
columns of the coefficient matrix are orthogonal. So as in
the quaternion model we obtain a structured coefficient matrix
which preserves the correlation between spectral channels and
the orthogonality property. Linear correlation among the color
channels, which has proven to be useful for the preservation
of color fidelity, remains valid. In this way the relationship
among the image channels is much better preserved than in
the standard concatenation model or in the band-wise K-SVD

model for multichannel images. In [12], an algorithm has been
introduced for solving (10) by solving the equivalent `1-norm
minimization problem for octonionic signals by converting it
into an equivalent problem over R, which is then solved as a
real convex optimization problem.

Here we introduce a new algorithm for solving (10) based
on the idea of the Orthogonal Matching Pursuit (OMP) [5]
but adapted to the octonion settings. Actually, in each step k
the algorithm selects the atom dk that produces the strongest
decrease of the residual ‖rk‖22 = ‖rk−1 − dkxk‖22, with
r0 = y. It can be shown that in the octonion setting this is
equivalent with selecting the atom that is most correlated with
the residual vector i.e. 〈rk,dk〉. Due to space limitation the
proof is omitted here and will follow in the future work. After
choosing the atom that produces the maximum absolute value
in the inner product with the residual, the active dictionary is
formed Dk = [Dk−1,dk] and the coding coefficients x are
selected so that the norm ‖y −Dkx‖22 is minimized. In the
complex and quaternion settings the problem of minimization
of ‖y − Dkx‖22 has a closed form solution which is given
as a multiplication of pseudo-inverse of the dictionary matrix
with the signal vector (see [16]). Due to difficulties of solving
linear least square problem in the octonion setting we use a
different strategy by transforming this minimization problem
into a real vector minimization problem by using (7) and (6).
Indeed, since

‖y −Dkx‖22 = ‖ν(y −Dkx)‖22
= ‖ν(y)− χ(Dk)ν(x)‖22, (12)

by minimizing the last expression on the right in (12) we can
easily solve the real minimization problem and then obtain the
octonion coefficient vector x by using the inverse map ν−1.

B. Dictionary update step

In order to solve the dictionary learning problem in (11)
we will iterate between two steps: sparse coding step (which
is performed by the proposed octonion OMP) and dictionary
update step. The algorithm presented here is based on the idea
of the Approximate K-SVD [13]. Due to the inability to find
eigenvectors and eigenvalues of octonion matrices (so far this
is solved only for 2×2 and 3×3 octonion Hermitian matrices
- e.g. [17]) which results in the inability of defining inverses
and pseudoinverses of octonion matrices, we cannot use the
classical K-SVD model. But, as it was stressed in [13], the
exact calculation of the inverse matrix is not really a necessity.

Indeed, the previous idea can be extended to the octonion
setting and in this way we are able to solve the one-rank
minimization problem without exact computation of the SVD
decomposition of octonion matrices. Namely, the dictionary
update stage can be performed via alternating minimization,
i.e. by fixing one variable and solving the minimization
problem with respect to the second variable. Exact calculations
with proofs that in the octonion setting this indeed leads to
a solution of the minimization problem in (11) are space
consuming and will not be presented here.
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V. EXPERIMENTS AND VALIDATION

We demonstrate the potential of our method by illustrating
its applications in reconstruction and denoising of multi-
channel images. All dictionaries were trained in 10 iterations,
on the same set of images of size 512 × 512. The sparsity
level L ≤ 5 for ODL and K-QSVD was used, and in order
to ensure fair comparison, for concatenated K-SVD model we
use sparsities L ≤ 20 and L ≤ 40 for color and Landsat 7
images, respectively.1 The same sparsity levels were used later
for image reconstruction. The dataset of training samples, both
for the color and for the Landsat 7 image processing, consists
of 10000 fully overlapping image patches of size 8 × 8, but
we can also choose patches of different size (e.g. 5× 5). The
experiments for image reconstruction from complete data were
repeated for different sizes of dictionary, but for denoising we
always use a dictionary of size 64× 256.

Now we will formulate the image denoising problem that
we will solve in the sequel by using the proposed ODL model.
Let Y ∈ O

√
m×
√
m be an ideal noise-free image and let Z be

its noisy version Z = Y + w, with w being additive white
Gaussian noise with standard deviation σ. Assuming that all
the image patches from Y admit a sparse representation, we
want to solve the following minimization problem{

D̂, x̂ij , Ŷ} = argmin
D,xij ,Y

{λ‖Z−Y‖22+∑
ij

µij‖xij‖0 +
∑
ij

‖Dxij −RijY‖22
}
,

(13)

where Ŷ is the estimator of Y and RijY extracts a
√
m×
√
m

patch at position (i, j) from Y. Further, x̂ij represents the
coefficient vector for the patch located at position (i, j) and
D̂ is the estimation of the optimal dictionary which leads to
the sparsest representation of the recovered image. During the
computation of the representation vectors xij for each image
patch RijY, the octonion OMP refers to

argmin
xij

‖xij‖0 s.t. ‖Dxij −RijY‖22 ≤ n(Cσ)2, (14)

with σ being the standard deviation of the Gaussian noise.
The image is then reconstructed by simple averaging of the
denoised patches. Empirically, in our method we set C = 1.15
and λ = 0.04.

A. Color image denoising

The proposed octonion dictionary learning model as an
extension of K-QSVD towards more channels is applicable to
standard color images as well, where the three color channels
are assigned to 3 out of 7 imaginary units. In order to verify
this experimentaly the ODL method was compared with K-
QSVD [3] and the traditional K-SVD model (introduced in
[18]) in the task of color image denoising. Figure 1 shows
image denoising results for two test images. In both cases,

1In the ODL model, every element in the coefficient vector is an octonion,
so each of them has 8 values in itself. The ratio for the comparison with
the K-SVD model is 1 : 8 so the same number of non-zero elements in the
coefficient matrix X is used.

(a) σ = 10 (b) 33.53 dB (c) 34.42 dB (d) 35.13 dB

(e) σ = 25 (f) 29.28 dB (g) 30.43 dB (h) 30.45 dB

Fig. 1. Color image denoising. First column - noisy images with Gaussian
noise. Second column - K-SVD denoising. Third column - K-QSVD denois-
ing. Fourth column - ODL denoising. PSNR values are below the images.

K-QSVD and ODL improve upon the traditional K-SVD. The
proposed ODL yielded a better result than K-QSVD on the
less noisy image and a similar result on the noisier one. ODL
also demonstrated somewhat better texture preservation at the
expense of some residual noise.

TABLE II
DENOISING OF COLOR IMAGES WITH AVERAGE VALUES OF PSNR/SSIM

OBTAINED OVER THE SET OF TEST IMAGES

Average values of PSNR/SSIM
K-SVD K-QSVD ODL

σ = 10 34.40dB/0.966 34.53dB/0.902 35.32dB/0.971
σ = 25 29.00dB/0.880 30.65dB/0.819 29.94dB/0.889

Average values of two metrics: peak signal to noise ratio
(PSNR) and structural similarity index (SSIM), obtained on
a set of five test images (frog, safari16, Lena, peppers and
pelican) are reported in Table II. The results show that at rela-
tively small noise levels our method outperforms the other two
dictionary learning methods in both PSNR and SSIM values.
At higher noise levels, the proposed ODL still outperforms
K-SVD and yields similar results as K-QSVD, while being
applicable to images with more than three channels in contrast
to K-QSVD.

B. Denoising Landsat 7 data

In this Section we validate the proposed ODL method on
images with more than three channels. In particular, we use
two multi-spectral remote sensing images acquired by Landsat
7: Montana and Mississipi (which are included in Matlab, see
[19]). The main motivation behind our method with higher-
dimensional algebraic structure is the preservation of spectral
fidelity after data processing. Since K-QSVD is not applicable
to images with more than three channels, we compare the
results to K-SVD only. In a first experiment, we evaluate
image reconstruction quality from complete data. The average
reconstruction PSNR/SSIM values for the two tested images
are 42.47dB/0.9978 and 40.90dB/0.9960 for ODL and K-
SVD, respectively. Table III reports image denoising results for
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(a) Original noise-free image (b) 28.13 dB/0.5068 (c) 34.79 dB/0.991 (d) 36.79 dB/0.9000

Fig. 2. Noisy Montana image (b) with σ = 10 denoised by the K-SVD method (c) and the proposed ODL method (d) with average PSNR/SSIM values.

different levels of additive white Gaussian noise. Experiments
were repeated 10 times for both images and the average value
for each image is showed. Note that our method gives better
results for σ = 10 and in Figure 2 the color fidelity in the
reconstructed true color image is better preserved than with
the K-SVD model. Also, for higher levels of Gaussian noise
the algorithm tends to give more or less similar results as K-
SVD (see Table III).

TABLE III
DENOISING OF LANDSAT 7 IMAGES WITH AVERAGE PSNR/SSIM VALUES

AFTER REPETITION OF EXPERIMENTS ON THE SPECIFIED IMAGES

Montana image Mississippi image
K-SVD ODL K-SVD ODL

σ = 10 34.79/0.991 36.79/0.900 36.21/0.989 38.71/0.918
σ = 25 31.63/0.981 32.30/0.765 32.54/0.969 33.09/0.772
Average 33.21/0.986 34.54/0.832 34.37/0.979 35.90/0.845

The test platform was MATLAB on Intel Core-i7 CPU with
16GB memory. The average time for the reconstruction from
the complete data is 350 seconds for the ODL model and 240
seconds for the K-SVD model. Similarly, for the denoising the
approximate time is 800 seconds for ODL and 600 seconds
for K-SVD.

VI. CONCLUSION

In this paper, we proposed a new model which can be ap-
plied for image processing tasks such as image reconstruction
and image denoising of multichannel images. We combine the
octonion algebra with dictionary learning techniques. Also the
new algorithm for solving the octonion sparse coding problem,
named as octonion orthogonal matching pursuit as well as
the octonion dictionary learning (ODL) technique, based on
the alternating minimization technique, were introduced. The
experiments conducted for the reconstruction and denoising of
color and Landsat 7 satellite images showed improvements in
PSNR values in the reconstruction compared to the traditional
concatenated K-SVD model.
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