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Abstract—Light field cameras capture information about the
incoming light from multiple directions, going beyond classical
capturing of light intensity performed by regular RGB cameras.
This enables the computation of more accurate depth maps
compared to stereo methods based on conventional cameras.
However, the very small angular resolution of light field cameras
limits their practical use in 3D applications. In this paper, we
introduce for the first time in the literature the use of light
field camera arrays, with the aim of improving the depth maps
while providing a wide field of view. In this context, a novel
algorithm for multi-stereo matching based on light field camera
arrays is proposed. The disparity maps for the sub-aperture
images are computed based on light field camera pairs using a
novel multi-scale and multi-window stereo-matching algorithm.
A global energy minimization based on belief propagation is
proposed to regularize the results. The resulting depth maps are
efficiently fused by means of k-means clustering. The proposed
approach demonstrates very promising results for accurate 3D
scene reconstruction and free navigation applications.

I. INTRODUCTION

Dynamic 3D scenes are conventionally acquired with arrays
of RGB cameras possibly enriched with time-of-flight sensors.
It is well-known that depth maps that are estimated using
(multi-)stereo methods are subject to noise which impairs their
use for advanced applications, such as free navigation, multi-
view synthesis, and accurate 3D scene reconstruction. Despite
of the stringent need for highly accurate depth information,
it is still particularly challenging to extract depth maps of
sufficient quality using current active or passive depth-sensing
methods. In particular, objects with fine details are especially
difficult for multi-stereo methods, as such features occupy
small volumes and are only visible in a small portion of the
available views.

Light field cameras record the light intensity in a scene but
also the incoming direction of the light rays hitting the photo
sensor. Light field images contain different depth cues, such as
correspondence and defocus, which can be combined to com-
pute a depth map [1]. The technique from [1] was modified by
Wang et al. [2] to deal with occlusions, and by Tao et al. [3]
who developed an algorithm for dense depth estimation that
combines defocus and correspondence metrics, and refines fine
object details using shading under the Lambertian assumption.
The state-of-the art in depth estimation in light field cameras
based on correspondence cues is the work of Navarro et al. [4].
In [4] disparity maps are computed on pairs of sub-aperture
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images, and subsequently fused to obtain a robust and dense
depth map.

However, the low angular resolution of light field cameras
often limits their practical use in 3D applications. Moreover,
the extremely small baselines in light field cameras yield
noisy depths maps in difficult areas. This calls for using
light field camera arrays such that the 3D information can
be captured within a much wider field of view. To the best
of our knowledge, arrays of light field cameras have not yet
been studied in the literature. In this work, we explore the
combination of several light field cameras in order to compute
more accurate depth maps compared to those extracted from
only a single light field camera, hereby greatly improving
the angular resolution. To achieve this, multiple depth maps
are estimated using a multi-scale multi-window matching on
different pairs of sub-aperture images [5]. We consider pairs
of sub-aperture images in the same light field camera (intra-
mode) as well as pairs across different cameras (inter-mode).
Using the estimates from different images, the depth of the
center view of each light field camera can be refined by multi-
hypothesis prediction.

The paper is structured as follows. Section II details the
proposed multi-stereo method for light field camera arrays.
Section III presents the depth fusion algorithm, whereas sec-
tion IV reports the experimental results obtained with the
proposed method. Finally, section V draws the conclusions
of this work.

II. DISPARITY MAP COMPUTATION

Currently, depth maps can be determined using either time-
of-flight cameras or RGB stereo-pairs. For the latter, two
images of the same scene are captured from different locations.
By determining corresponding pixels in the two camera views,
one determines a disparity map which expresses the displace-
ment of pixels from one image to the other. We know that
the disparity of a pixel is inversely proportional to its depth,
i.e. pixels closer to the camera appear to move more than
pixels further away. If the cameras are calibrated, the depth
of each pixel can be computed from the estimated disparity.
This technique is known as stereo-matching.

The method proposed in this work builds on the basic
principles of correspondence matching for light field cameras
proposed in [4]. The approach of [4] demonstrates state-of-the-
art performance for single light field camera depth estimation,
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Fig. 1. Windows used in the stereo-matching algorithm.

which is due to performing multi-scale and multi-window
stereo-matching [5]. However, in contrast to [4], which is
essentially a local disparity estimation method, we propose
a global optimization method for disparity selection, which
brings robustness and improves the depth estimation results
over [4]. Details are provided next.

A. Multi-window matching

This section explains the core of the stereo-matching al-
gorithm, in which we attempt to find for every pixel the
most likely disparity d € [minD,maxD]. This disparity is
the perceived horizontal displacement of a pixel as viewed
in two different images, and is inversely proportional to the
distance of that point to the camera. In case the images are
rectified, this displacement is purely horizontal, otherwise it
follows the epipolar line. To select an appropriate disparity,
we compute the zero-mean SSD cost (ZSSD) of associating a
pixel p in a reference image u to a pixel ¢ in a search image
v by minimizing:

Cwlp.) = i1 3 | (utp+ 1) = v )
tew

(et -w@) . ®

where W are windows centered in pixels p and ¢ in images
u and v respectively, uw (p) and vy (q) are the average
intensities within the windows in images u and v, respectively,
and |W| is the size of W.

In order to find the best correspondence, different window-
shapes are taken into account (Fig. 1). The usage of multiple
windows improves the accuracy at objects boundaries and 3D
surfaces that are not fronto-parallel to the camera plane.

B. Multi-scale refinement

An important aspect of the stereo-matching algorithm is to
appropriately choose the range [minD, maxD] of values the
disparity can take. It has to be wide enough to be sure that the
disparity of every pixel is considered. On the other hand, we
want to keep this range as tight as possible to speed-up the
estimation procedure and to prevent it from selecting wrong
disparity values.

For this reason we apply a coarse-to-fine approach. We build
a Gaussian image pyramid using logarithmic scale factors, and
the disparity is estimated using the multi-window algorithm
explained in Section II-A, the results being propagated from
coarser to finer levels. If a pixel is marked as reliable, its
disparity range at the next level is then reduced to the disparity
values of that same pixel and the one of its neighbors in this
level. Otherwise, the next scale considers the full disparity
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range for that same pixel. The different criteria to reject
unreliable pixels are explained in more detail in Section II-C.

In practice, the true disparity of a particular pixel is rarely an
integer value. For this reason, our method is able to search for
matches at an arbitrary sub-pixel accuracy (half-pixel, quarter-
pixel, etc.). This is particularly important in intra-mode where
the disparity values are often less than a full pixel. Sub-
pixel matching is implemented using Lanczos filtering and re-
sampling [12]; this increases in principle the disparity search
range, making it very important to keep tight upper- and lower-
bounds of likely disparity values per pixel in order to maintain
reasonable computational loads.

C. Rejection criteria

To determine whether the disparity-estimate for a pixel is
reliable or not, four different rejection criteria are applied:

a) Fattening detection: We consider the neighborhood
contained in the current window, selected among the ones of
Figure 1, centred on the considered pixel p. In this neigh-
borhood we select the pixel with the lowest match-cost and
two random pixels. Then, the 3D plane formed by these three
pixels and their estimated disparities is computed. Following a
RANSAC-approach [11], this process is iterated a few times,
and the plane fitting best the neighborhood of the central pixel
is kept. Finally, the disparity d(p) is rejected if it is too far
away from this plane.

b) Match ambiguity: For every pixel, we find the cost
of the best match within the same image [5]. If this cost is
smaller than the cost of the best match in the other image, the
pixel is rejected because it is likely part of a repetitive texture.

c) Left right (LR) consistency: This rejection criterion
is the most often used in stereo-matching. It verifies that the
disparity found for a given pixel z in the left view corresponds
to corresponding pixel in the right image. Disparity differences
larger than 7 are marked as unreliable. Formally, the disparity
for a pixel is rejected if:

|dr(2) = di(z + dr(x))] > T, 2)

where in practice we choose 7 equal to one.

d) Isolated matches: This last criterion rejects a pixel
if it is isolated, meaning that all its 8-connected neighbors
are either unreliable or have a disparity difference larger than
a given threshold (which we set to 1). If this is the case, the
pixel is likely to be a mismatch and we have the multi-window
matching a the next level consider the full disparity range.

D. Optimal disparity selection using belief propagation

In [5], a winner-takes-all (WTA) approach is followed,
selecting the disparity d of each pixel as the one having the
smallest cost over all match-windows. However, such greedy
selection methods are known to be prone to noise and methods
relying on global optimization are known to give more robust
results [6]. We have thus decided to use the belief propagation
algorithm [7], [10] to compute the disparity maps. A more
detailed explanation is given at the end of this section. Pseudo
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code for the WTA and BP methods can be found in Algorithms
1 and 2, respectively.

In [5], a disparity map is computed for each window. To
obtain a final disparity map, the algorithm of [5] selects for
each pixel the disparity value that has the smallest cost over
all windows. As this is a local method, we improve the final
disparity selection by using a global optimization strategy.
In contrast to this WTA approach, in our method the final
disparity map is obtained by minimizing a global energy
function over the entire image. The energy function balances
the minimization of the local ZSSD cost per pixel with a first-
order Markov term that promotes piece-wise smoothness of the
final depth map. This is obtained by minimizing the energy:

N
E(ly,la, .. ly) =Y Vali, i)+ > Valli, 1), 3)
i=1

JEN;
Va(i,d) = min Cy (i, i + d), )
‘/S(l“l]) = )\*min(T,abs(li—lj)). (5)

In these equations, the data term Vj(i,d) is the cost of
assigning a disparity d (Eq. (1)) to a given node ¢ in the MRF.
The smoothness V(l;,1;) term assesses the compatibility of
two adjacent nodes taking on labels /; and /;, respectively. As
adjacent pixels are often part of the same object, they should
be likely to have similar disparity values, so this situation is
strongly encouraged by this energy function. 7 is a truncation
factor used to reject too different labels that can either be
wrong of be of distinct objects, while A is a smoothness factor.

Algorithm 1 Multi-window WTA algorithm of [5]
1: for each window w do
2 dispy < ZSSDMatching(u,v,dMin,dMaz,w)
3 Update disp,, applying Fattening detection
4 Update disp,, applying Match Ambiguity detection
5: Update disp,, applying LR criterion
6: Update disp,, removing Isolated Matches
7: end for
8: disp <~ Combine all the disp,,
9: Update disp applying LR criterion
0: Update disp removing Isolated Matches

—

Algorithm 2 Proposed multi-window algorithm using Belief

Propagation
1: for each disparity d € [dMin,dMazx]| do
2 finalCost[d] < matriz(maxCost)
3 for each window w do
4 cost(d,w) + ZSSDCost(u,v,d,w)
5: finalCost[d] < min(finalCost|d], cost(d,w))
6: end for
7: end for

8: disp < Belief Propagation(finalCost)

9: Update disp applying LR criterion

0: Update disp removing Isolated Matches

—
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To minimize the global energy function as defined in Eq.
(3), we employ the max-sum variant of the belief propagation
algorithm [7] on the 8-connected grid of the left and right
images. The max-sum method is a global optimization method
aiming here at finding a minimum total MRF energy solution
for the final disparity map. Essentially, after performing our
multi-scale multi-window disparity selection, each pixel is
associated with a disparity range indicating possible dispar-
ities. Subsequently, the belief propagation will then select
one optimal disparity value within this range. During each
iteration of the algorithm, information is passed through the
MRF by means of directional message passing alternating
between horizontal, vertical and diagonal sweeping directions.
The messages exchanged between neighbouring nodes ¢ and
J are:

mij (1) = max | =Va(i,1j) = Va(L1;) + > mi(ly) ] - (6)
! keN;
k#j
This information represents the belief of a node in a given
disparity. It is made of a data term V}; and a smoothness term
V5. After convergence, the disparity with the highest belief is
assigned to each node:

D(i) = argmax b;(d), @)
with:
bi(d) = —Va(i,d) — Y myi(d). (8)
keN;

III. DISPARITY MAP MERGING

The goal of this multi-stereo-matching is to improve the ro-
bustness of the generated depth maps using light field cameras;
these cameras produce much richer information compared to
regular RGB cameras, but they suffer from small angular
resolutions. We solve this problem by using light-field camera
pairs, leading us to two groups of images for which we have to
compute depth maps. That is, we perform (i) depth estimation
within each light field camera, and (ii) multi-stereo matching
in between light field cameras. The resulting depth maps need
to be merged to obtain the final depth maps at the center of
each light-field camera.

A. Image pairing

The stereo-matching algorithm explained in Section II was
applied within a single camera - intra mode - and between sup-
aperture images of different cameras - inter mode - to compute
disparity maps at every image location. Pair selections for the
intra- and inter-modes are shown in Figure 2.

These two modes have different properties. On one hand, the
disparity maps are more difficult to compute for the intra mode
because of the small baseline between the images, leading to
disparity values often smaller than a pixel. On the other hand,
the inter mode has the disadvantage of big occlusion zone
in which the disparities cannot be computed. By computing
the disparity maps at each image position using both modes,
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(a) Intra mode

(b) Inter mode

Fig. 2. Different stereo-matching modes used.

we are thus able to combine their advantages and to obtain
accurate depth maps for every light-field camera in the array.

B. Occlusion-handling

Both intra- and inter-mode depth maps are reprojected to
the central view of each light field camera, ignoring pixels that
were marked as unreliable. This gives, for every pixel of the
central depth map, a set of candidate disparity values. In some
regions, these disparity values are close to each other, however,
they can differ significantly in other regions that were occluded
in one or more sub-aperture images. As explained in [8],
occlusions occur at object boundaries, hiding the background
for certain view points. When re-projecting, the same pixel
will then get values from the background and the foreground
object, and the latter should not be kept.

To separate the foreground and the background disparity
values, a k-means clustering [9] method was used. After
outlier-removal, the cluster with the smallest centroid, cor-
responding to the background, was selected. If the other
centroids were close enough, they were kept as well. Finally,
an average was made, leading to a final disparity map at the
camera center.

This procedure generates two disparity maps for each light
field camera center: intra and inter. The accuracy of the inter-
depth-estimate is higher than the intra one, but it contains
more occlusions. Therefore, the last step was to use the intra
disparity maps to fill-in holes of the inter disparity, leading to
a final, accurate and complete disparity map.

IV. EXPERIMENTAL RESULTS

To the best of our knowledge, no previous work addresses
arrays of light field cameras. In order to have ground-truth
data for objective evaluation, we rendered a new dataset. The
dataset simulates two light field cameras with a lenslet array
of five by five sup-aperture images. This work is the starting
point in the domain and only makes use of the five images
of the central row in each light field camera. The scenes,
were designed with different textures, shapes and backgrounds,
and rendered in Blender 2.78. Central views of the different
datasets are shown in Figure 3.
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(c) Dragon

(d) Geometric

(e) Skeleton

Fig. 3. Dataset used in the experiments.

TABLE 1
PSNR VALUES OF DISPARITY MAPS USING WTA AND BP

’ ‘ Dataset H Buades’ method [5] | Proposed method (BP).

Intra Buddha 33.7829 34.0620
Chess 29.7416 29.9529

Dragon 31.3294 32.3040
Geometric 33.9428 35.4944
Skeleton 36.7150 38.4359

Inter Buddha 33.7983 34.5498
Chess 30.2827 30.3567

Dragon 33.3455 33.4564
Geometric 36.7338 36.8131
Skeleton 40.5818 40.6898

A. Belief propagation improvements

To assess the efficiency of the belief propagation method
in the context of this stereo-matching algorithm, in Table I
we report the PSNR results obtained using both the reference
WTA method of [5] and the proposed BP method when
operating in both intra- and inter- modes.

We note that our algorithm systematically outperforms the
state-of-the art winner-takes-all (WTA) method of [5]. The
differences are substantial in the intra case, with PSNR gains
up to 1.72dB. This is an important improvement, demon-
strating that the proposed BP method substantially improves
performance over the original WTA method of [5].

B. Merged depth maps

The final result of our work can be seen in Figure 4. As it
was expected, we observe that the inter mode is more accurate
than the intra mode, while having more occlusions. Those
occlusions were filled-in using the intra mode, giving us our
final hole-free disparity maps at each camera location.

V. CONCLUSIONS

In this paper we have introduced a novel method to estimate
depth from multiple light field cameras. The proposed method
uses multi-window matching for accurate correspondence find-
ing, multi-scale processing for both robustness and speed, and
global energy minimization to select the optimal depth values
for each pixel. We have shown that it is possible to obtain
accurate depth maps within a wide field-of-view by optimally
combining the disparity maps computed based on different
pairs of sub-aperture images in the light field camera array.
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(a) Buddha

(b) Chess

(d) Geometric

(e) Skeleton

Fig. 4. Final results : from left to right, (i) ground truth, (ii) intra-, (iii) inter- and (iv) merged disparity maps.
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