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Abstract—Heterogeneous cellular architectures are a promis-
ing technology direction for upcoming generations of wireless
communication networks. Increasing performance requirements
are fulfilled by utilizing a dense deployment of low-power small
cells in addition to existing macro cells. In such dense cellular
networks it is critical to prevent performance losses from increas-
ing interferences and uneconomic operating costs caused by high
power consumptions. These changes in the network architecture
create the need for effective control mechanisms specifically
designed for heterogeneous networks. Range expansion for small
cells has been proposed and extensively researched to achieve
load balancing between macro cells and small cells. In this work,
we propose a decentralized approach for cell range expansion
in small cell networks that in operation only requires very
limited local interaction between neighboring cells. We use multi-
class support vector machines as a classifier to select suitable
parameters for each small cell. Experimental results show that
the proposed decentralized approach achieves close to optimal
load balancing performance.

I. INTRODUCTION

As the current fourth generation of mobile communication

networks reaches maturity, multiple technology directions are

under investigation to fulfill the promises of higher per-

formance set for the fifth generation (5G). State-of-the-art

modulation and coding schemes push the achieved spectral

efficiency to its theoretical limit. It becomes clear that more

resources need to be utilized to increase the throughput of such

networks. Possible approaches include drastically increasing

the number of used antennas in Massive-MIMO systems, using

additional frequency bands in the millimeter-wave spectrum,

or increasing the number and density of mobile cells especially

in urban environments [1], [2]. The latter approach involves

supplementing the existing and established network of high-

power macro cells (MC) with a high number of so-called

”small cells” (SC). These SCs can be deployed in critical areas

such as hotspots with a high density of users, or along the

edges of the coverage area of MCs [3]–[5].

The resulting network is commonly called ”Heterogeneous

Network” or in short ”HetNet”. As a major challenge for such

dense networks, the load experienced by both macro cells and

small cells needs to be balanced to avoid a decrease in the

experienced quality of service caused by dropped connections.

The two main challenges for deployment of dense HetNets

are the increased interferences, which sets an upper bound on

the achievable data rates through densification [6], and the

high cumulative power consumption of small cells deployed

in huge numbers, which can render the network operation un-

economical for the operator [7]. Developing effective control

schemes that coordinate and optimize the network resources is

critically important to mitigate the aforementioned drawbacks

and to enable the success of HetNets in 5G.

In addition to the correct placement of SCs [8], the optimized

allocation of users to MCs or SCs is a subject of current

research [9]–[11]. The allocation can be optimized while the

network is in operation, or optimized allocation rules can be

devised before, based on demand forecasts. Most prominently,

small cell range expansion has been proposed as an effective

way to move users from the typically overloaded MCs to the

less utilized SCS. This is achieved by introducing a so-called

bias to the signal power report received by the user node,

where the user is typically allocated to the cell providing

the strongest reported signal power value. For the allocation

decision with range expansion however, the signal power from

small cells is increased with a bias value. This leads to

more users being allocated to SCs, which corresponds to an

increased coverage area. The main parameter to be optimized

for range expansion is the bias value for each SC, for which

optimized allocation schemes have been proposed [10], [12].

The common drawback of these schemes is that they require

extensive knowledge about the channel conditions and the state

of each network entity to perform the bias value and allocation

optimization, which is carried out either centrally or using

consensus algorithms [13].

In this work, we propose a mixed-integer linear program

(MILP) approach to solve the range expansion problem op-

timally. We obtain the MILP from a nonlinear formulation

that is linearized in a lifting procedure. To mitigate the

aforementioned problem of high communication and coordi-

nation overhead with established methods, we also introduce

a learning-based approach for optimized range expansion in

heterogeneous wireless communication networks. Our method

relies on the optimal bias values from MILP solution of the
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Fig. 1. Illustration of the wireless network scenario

range expansion problem obtained from historical network

data. We extract attributes of the network state that are easily

accessible to each small cell, such as its own load levels and

that of neighboring macro cells. The small cell attributes and

the optimal MILP results are used to train a classifier based

on multi-class support vector machines. This classifier is then

applied locally in each SC to find its optimal bias value in

new network scenarios. Using machine learning classifiers as

improvised resource allocation schemes in wireless commu-

nication networks is only being considered recently, and to

the best of our knowledge comparable methods have not been

introduced.

The remainder of the paper is organized as follows: In

Sec. II, we introduce the system model for the considered

wireless communication network. The proposed methods for

load balancing are explained in Sec. III. In Sec. IV we

provide simulation results and an evaluation of the algorithms

performance, followed by a final summary and conclusion in

Sec. V.

Notation: We use normal letters for scalars, bold lowercase

letters for column vectors and bold uppercase letters for

matrices. We further indicate with || · || the Euclidean norm of

a vector, and with ·T the vector transpose.

II. SYSTEM MODEL

The elements of a heterogeneous mobile communication

network are illustrated in Fig. 1. We consider a network

containing K cells, each formed by a base station with

respective transmit power pk, k = 1, . . . ,K. We denote as

CMC and CSC the sets of all base stations that correspond

to macro cells and small cells, respectively. Additionally the

network contains M demand points (DP) with a respective

data demand dm in bits per second, with m = 1, . . . ,M . These

demand points may represent single users or the aggregated

demand of multiple users in close proximity, for example in

a mobile hotspot. The attenuation factor of the wireless link

between cell k and DP m resulting from antenna gains and

path loss is in the following denoted as gkm. The signal-to-

interference-plus-noise-ratio of cell k serving DP m can be

defined as

γkm =
pkgkm

∑K

j=1,j 6=k pjgjm + σ2
(1)

where σ2 represents the power of additive white Gaussian

noise. The transmission link between cell k and DP m has

a bandwidth efficiency ηBW
km , and the total available system

bandwidth is denoted as W . We assume that cell k needs to

utilize the fraction

Φ(k,m) =
dm

ηBW
km W log2(1 + γkm)

(2)

of its available resources to satisfy the data demand of DP m.

The binary matrix A ∈ {0, 1}K×M indicated the allocation

of DPs to cells. Element Akm set as Akm = 1 if DP m

is allocated to cell k, and Akm = 0 otherwise. In order to

quantify the data demand of all its allocated users, the ratio

of total used and total available resources for cell k can be

determined as

ρk(A) =
M
∑

m=1

AkmΦ(k,m). (3)

We introduce a set of available nonnegative bias values S =
δ1, . . . , δS . The K-element vector of the selected bias values

for all cells is denoted as λ with the elements λk ∈ Sk. For ex-

ample, if SCs operate with any of the available bias values and

MCs would not be biased, we would have λk = 1 ∀k ∈ CMC

and λk ∈ S ∀k ∈ CSC According the the general allocation

procedure in 4G 3GPP networks we assume that a DP m is

allocated to the cell k providing the highest product of received

transmit power and bias value. Thus the resulting allocation

rule used to determine A can be formulated as

Akm =

{

1 ifλkpkgkm ≥ (1−Ajm)λjpjgjm ∀ j,

0 otherwise.
(4)

In the following we denote the A obtained from applying (4)

with λk = 1 ∀k (no bias) as Ã. Similarly we define A0 as the

allocation result according to Eq. (4) for λk = 1 ∀k ∈ CMC

(no bias) and λk = 0 ∀k ∈ CSC (bias). We further define

κP
k and κS

k as the indices of the two cells which provide the

strongest and second strongest signal in the location of cell k,

other than cell k itself.

III. LOAD BALANCING

A. Optimal MILP

In the following we introduce a scheme to find the optimal

bias values for each cell that minimize the maximum load of

any cell in the network. These optimal bias values are obtained

as the optimal solution of a mixed integer problem. We assume

that λk ∈ Sk ∀k ∈ CSC and λk = 1 ∀k ∈ CMC, which means

that SCs can operate with any of the available bias values
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and MCs operate without bias. The proposed problem can be

formulated as follows:

minimize
α,A,λ

α (5a)

subject to α ≥
∑

m

AkmΦ(k,m) (5b)

∑

k

Akmλkpkgkm ≥ (1−Ajm)λjpjgjm ∀j,m

(5c)

K
∑

k=1

Akm = 1 ∀m (5d)

α ∈ R0+ (5e)

Akm ∈ {0, 1} ∀k,m (5f)

λk ∈ Sk ∀k ∈ CSC, λk = 1 ∀k ∈ CMC (5g)

In problem (5), constraints (5d) force each DP to be allocated

to exactly one cell. Contraints (5c) represent a reformulation

of the allocation rule introduced in Eq. (4). Problem (5)

is a mixed-integer nonlinear problem (MINLP) because of

the bilinear product terms Akmλk. We will in the following

convert this problem into a mixed integer linear problem

(MILP) using a lifting strategy in a Big-M approach [14]. Let

the constant

λ = argmax
s,k

δs,k (6)

denote the largest bias value. We introduce an auxiliary

parameter Λkm, for which we enforce Λkm = Akmλk ∀k,m
using the following linear inequalities:

Λkm ≤ Akmλ (7a)

Λkm ≤ λkm (7b)

Λkm ≥ λkm − (1−Akm)λ (7c)

Λkm ≥ 0 (7d)

Problem (5) can be reformulated as the following:

minimize
α,A,λ,Λ

α (8a)

subject to α ≥
∑

m

AkmΦ(k,m) (8b)

∑

k

Λkmpkgkm ≥ (λj − Λjm)pjgjm ∀j,m

(8c)

(5d), (7) ∀k,m (8d)

α ∈ R0+ (8e)

Akm ∈ {0, 1} ∀k,m (8f)

λk ∈ Sk ∀k ∈ CSC, λk = 1 ∀k ∈ CMC (8g)

Λkm ∈ R0+ (8h)

Problem (8) is linear in all optimization variables and therefore

classifies as a MILP, which can be solved using conventional

state-of-the art solvers. Even though problem (8) is capable of

obtaining the optimal bias values, the network needs to gather

all information about SINR-levels, user demands etc. centrally

to solve the problem. In the following we introduce a learning-

based decentralized approach.

B. SVM-based optimization

We denote as λ∗ the optimal bias values for a given network

scenario obtained by solving problem (8). We compute a

vector of class labels y with its elements yk = {s|λk = δs}. In

the following we design suitable attributes for each small cell

that are being mapped to corresponding features to be used in

the proposed classification scheme.

We define the attribute α(k) which is determined as α(k) = 1
if small cell k is deployed on the edge of the coverage areas

between two macro cells, and α(k) = 0 otherwise, which is

illustrated in Fig. 1. Which of these roles a small cell fulfills

is known to the operator from the network architecture.

For the second set of attributes, let us define the index set

M
{s}
k = {m|δspkgkm ≥ pjgjm∀j ∈ CMC} (9)

of DPs connected to cell k if bias value δs is used, for which

we compute the expected load of cell k as

β(k, s) =
∑

m∈M
{s}
k

Φ(k,m). (10)

Similarly we compute the expected sum load that DPs in the

coverage area of SC m operating with bias δs causes to the

first and second neighboring cell in the allocation defined by

A0:

ǫP(k, s) =
∑

m∈M
{s}
k

A0

κP

k
m
Φ(κP

k ,m) (11)

and

ǫS(k, s) =
∑

m∈M
{s}
k

A0

κS

k
m
Φ(κS

k,m), (12)

respectively. The aforementioned attributes are combined into

the following (3S + 1)-element attribute vector:

xm = [α(k), β(k, 1), . . . , β(k, S),

ǫP(k, 1), . . . , ǫP(k, S), ǫS(k, 1), . . . , ǫS(k, S)
]T

(13)

We assume that for the training of the classifier, N network

scenarios each with ||CSC|| small cells are being used, such

that a total of T = N ||CSC|| datasets are available. In the

following we refer to the t-th class label and attribute vector

as yt and xt respectively, with t = 1, . . . , T .
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Fig. 2. Maximum cell load over number of users M

We solve the following optimization problem to train an SVM

that classifies between classes i and j [15], [16]:

minimize
w{ij},b{ij},ξ{ij}

1

2
(w{ij})Tw{ij} + C

∑

t

ξ
{ij}
t (14a)

subject to (w{ij})Tφ(xt) + b{ij} ≥ 1− ξ
{ij}
t if yt = i

(14b)

(w{ij})Tφ(xt) + b{ij} ≤ ξ
{ij}
t − 1 if yt = j

(14c)

ξ
{ij}
t ≥ 0 (14d)

w{ij} ∈ R
L×1, b{ij} ∈ R, ξ{ij} ∈ R

L×1

(14e)

The function φ(xt) in problem (14) maps the (3S + 1)-
dimensional attribute vector xt onto the L-dimensional feature

space. In this feature space polynomial combinations of the

attributes are used as training features. In order to evaluate

a ”one-vs.-one” majority vote between the trained SVMs, we

introduce a voting parameter

z
{ij}
t =

{

1 if (w{ij})Tφ(xt) + b{ij} ≥ 0

0 otherise
(15)

which is used to determine the estimated class

ŷt = argmax
i

S
∑

j=1

z
{ij}
t (16)

Multiclass SVM training problems like (14) are typically

solved with high computational efficiency in their Lagrange

dual formulation using kernel functions [17]. This

functionality is included in common machine learning

software tools [18], [19].

IV. SIMULATION RESULTS

We carry out simulations of a wireless network with the

parameters listed in Table IV and the locations of 3 MCs and

6 SCs as depicted in Fig.1. We solve the MILP (8) using

the CVX toolbox for MATLAB [21] with the Gurobi solver

[22], and we perform the training of the multiclass SVM

classifier (14) by using the Machine Learning Toolbox for

Matlab [19]. For the function φ(·) in problem (14) we consider
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a linear mapping of attributes to features, and the mapping

to quadratic features. We refer to these two methods as

”lin. SVM” and ”quad. SVM”, respectively. Multiple network

scenarios, each with randomly distributed DPs, are used for

the SVM training and testing phases. For the SVM training,

we use N = 250 network scenarios for a total of T = 2250
training datapoints. To test the performance of the SVM-based

classifier as a parameter optimization scheme, we use 100 new

TABLE I
LTE NETWORK SIMULATION PARAMETERS

Area size 1000× 1000 m

Noise power -145 dBm/Hz

System bandwidth W 20 MHz

MC transmit power pk 46dBm

MC antenna gain 15dB

SC transmit power pk 36dBm

SC antenna gain 5dB

DP antenna gain 0dB

Propagation loss 3GPP TS 36.814 [20]

Bandwidth efficiency ηBW 0.8

Bias values S 0, 1, 4dB, 8dB
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network scenarios in a Monte-Carlo evaluation and compute

the average achieved cell loads as performance metrics.

As a benchmark to evaluate the performance of the proposed

scheme, we use a network with SCs operating without range

expansion and DP allocation according to the strongest re-

ceived signal [12], in the following referred to as ”no range

exp.”. This approach minimizes the load incurred for each

connection of DP to cell. The upper bound performance

benchmark is given by the optimal bias selection obtained

from solving problem (8). Fig.2 shows the average maximum

load over the evaluated network scenarios for an increasing

number of users with a data demand of 1 MBit/s each.

As observable, the quadratic SVM achieves close to optimal

performance, while the linear SVM causes slightly higher

cell load, with both approaches showing lower load levels

than without range expansion for all M . This underlines the

stability of the proposed scheme and the suitability of the

selected SC features.

The load of individual cells for a simulation of 100 network

scenarios with 100 DPs with 0.8 MBit/s data demand each is

shown in Fig. 3. The load of MC1 without range expansion is

the critical one to be minimized for the load balancing scheme

to be successful. All proposed methods achieve decreased load

for MC1, with the SVM-based approaches being only slightly

worse than the optimum. The highest load of any SC is about

20%, which is a large increase relative to the load level without

range expansion.

The confusion matrix of optimal bias levels and classified

bias levels for the quadratic SVM is shown in Fig. 4. The

classifier shows very good performance with 93% accuracy in

detecting which small cells, according to the optimal solution

of the MILP, do not serve any DPs.Mainly for the bias values

0dB and 4dB, the accuracy is decreased. The most common

error made by the classifier, with respect to the optimal

MILP solution, is to not allocate users to SCs that for the

optimal solution actually had users allocated to them. The

good performance in load balancing however, as discussed for

Fig. 2, suggests that these wrong classifications do not occur

in critical scenarios.

V. CONCLUSION

We introduced a scheme for optimized small cell range

expansion for small cells in heterogeneous wireless commu-

nication networks. The proposed method relies on training a

classifier based on support vector machines using historical

network data. This classifier is then used by each SC in

operation of the network to set an optimized bias parameter for

range expansion, such that the maximum load of any cell in the

network is minimized. The attributes to be extracted by each

small cell only require local interaction with the neighboring

macro cells. Simulation results show that the proposed method

achieves close to optimal performance especially if support

vector machines with quadratic feature mapping are being

used.
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