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Abstract—Bicoherence is a useful tool to detect nonlinear 
interactions within the brain with high computational cost. Latest 
attempts to reduce this computational cost suggest calculating a 
particular ‘slice’ of the bicoherence matrix. In this study, we 
investigate the information content of the bicoherence matrix in 
resting state. We use publicly available Human Connectome 
Project data in our calculations. We show that the most prominent 
information of the bicoherence matrix is concentrated on the main 
diagonal, i.e., f1=f2. 
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I. INTRODUCTION 

Functional connectivity is described as the integration of 
segregated brain areas to operate as a network in several task-
related and resting state activations [1]. Over the last decades, 
several empirical studies have shown that the oscillatory 
synchronization is the key mechanism to functional connectivity 
between spatially distant areas and quantificiation of oscillatory 
synchronization is a useful tool to evaluate functioning of 
pathological and normal brain [2 - 4].  

Functional connectivity may be investigated in means of 
both linear and nonlinear interactions. Linear interactions within 
the brain have well been studied using the metric of coherence 
[5, 6]. But linear approaches have limitations since brain is 
evaluated as a nonlinear and dynamical system [7]. 
Consequently, various phase estimation and cross-frequency 
measures are used frequently to investigate functional 
connectivity caused by nonlinear systems [8 - 11]. 

A subtype of nonlinear interactions, named quadratic phase 
coupling (QPC) is an interaction of three frequencies;  𝑓ଵ , 𝑓ଶ 
and 𝑓ଵ + 𝑓ଶ. In order to suggest a QPC interaction, sum of the 
phases at 𝑓ଵ(ϕଵ) and 𝑓ଶ(ϕଶ) should be the phase at frequency 
𝑓ଵ + 𝑓ଶ (ϕଵ + ϕଶ) [12]. Bicoherence is a powerful tool to detect 
QPC and has been applied successfully to evaluate QPC types 
of nonlinear interactions in many signal processing fields as 
well as in human EEG and MEG [13 - 15]. 

Although proven useful in many signal processing fields, 
bicoherence has not been used widely in neuroscience due to 
computational costs [16, 17]. A pairwise bicoherence analysis 
of multivariate source data requires estimates in the order of 
~𝑁ଶ  𝑀ଶ, where N and M denote the number of channels and 
the number of sampled frequencies, respectively. In order to 
reduce computational costs, new methods were suggested. 

Sensor level PCA was applied by [17] to reduce the data. This 
approach actually only reduces the computational cost if only 
the sensor level bicoherence is being calculated. It is not 
applicable to source level bicoherence calculation. On the other 
hand, ‘sliced bicoherence’ was proposed by Özkurt [16] in 
order to reduce the computational costs with the idea that the 
most prominent interactions may be located on the main 
diagonal of bicoherence matrix.  

Considering earlier studies on bicoherence, information 
content of the main diagonal gains importance [16]. For 
example, a study on monkeys performing visuomotor tasks 
showed peaks at beta band on main diagonal [18]. A resting 
state analysis study by Chella et al. [17] identified significant 
peaks at alpha band particularly on the main diagonal. 
Similarly, (10-10 Hz) coupling at resting state was highlighted 
by another study [19]. Diagonal slice may also play a prominent 
role in the characterization of anesthesia [20]. Nevertheless, the 
information content of the bicoherence has not been thoroughly 
demonstrated, yet.   

This study examines the bicoherence matrix on resting state 
data, implements a statistical analysis method to compare 
diagonal and non-diagonal components and evaluates the 
efficiency of ‘sliced bicoherence’ metric. Throughout this 
paper, the term ‘slice’ will be used to describe diagonals with 
the 1st slice being the main diagonal. The indices of the slices 
increase towards lower left of the matrix. Fig. 1 shows the order 
of slices.  
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Fig. 1. ‘Slice’ Sequence of Bicoherence Matrix. 

II. METHODS 

A. MEG Data 

We used resting-state MEG recordings collected in the scope 
of HCP [21]. They are part of publicly available S1200 release. 
Details of the scanning procedures and data preprocessing are 
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provided by the S1200 Release Reference Manual [22]. Data 
consist of 89 MEG subjects which are young adults (ages 22-
25) with a subset of ~50 same-sex twin pairs.  

All subjects were scanned with a whole head Magnes 3600 
Scanner (4D Neuroimaging, San Diego, CA, USA) in a 
magnetically shielded room. Subjects were also scanned with 3T 
MRI (Siemens 3T “Connectome Skyra”, St. Louis, MO, USA) 
scanner in order to acquire anatomical information. Magnes 
3600 system includes 248 MEG channels together with 23 
reference channels. In order to co-register MEG data to the MRI 
scans, a 3-point reference system (nasion and two peri-auricular 
points) and locator coils were used.  

Resting state MEG data were recorded in 3 consecutive 
sessions for each subject for approximately 6 min. We selected 
one of three sessions randomly for this study. The data provided 
with HCP is preprocessed, resampled at 508.625 Hz. and saved 
in Fieldtrip file format. Bad channels, bad segments and 
remaining artifacts were removed using ICA. Cardiac 
components and eye-blinks were also suppressed in this manner.   

B. Software and Auxiliary Toolboxes 

All of the calculations in this study were implemented in 
MATLAB® (R2017a, The Mathworks Inc., Natick, MA). 
Publicly available Fieldtrip Toolbox [23], Higher Order Spectral 
Analysis (HOSA) Toolbox [24] and MEG Connectome 
Pipelines [22] were also utilized.  

C. Parcellation Atlas 

In order to reduce the data, identify Anatomical Volumes of 
Interest (AVOI) and create group level results, Automated 
Anatomical Labelling (AAL)  Atlas was used [25]. Original 
AAL Atlas includes 45 AVOIs in each hemisphere reaching a 
total of 90 AVOIs. AAL Atlas used in this study is based on the 
original atlas with addition of cerebellum and vermis 
(Neurofunctional Imaging Group-GIN, UMR6232, CYCERON, 
Caen, France). Table 1 and Fig. 3 provide detailed information 
about the atlas used in this study. 

D. Data Processing 

The workflow of data processing in the scope of this study is 
given at Fig. 2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2. Workflow of the study given in detail.  

(i) Source Localization: For source localization, leadfield 
matrix was calculated using subject specific headmodel 
provided by HCP and a 10 mm grid neural source model. Neural 
source model of ~1500 voxels was created for each subject with 
subject specific MRI data. Leadfield matrix was reduced to 1 
dipole orientation with most variance for each voxel using 
Single Value Decomposition. Source construction was realized 
using Linearly Constrained Minimum Variance Beamformer 
(LCMV) [26]. 

TABLE I  

ANATOMICAL VOLUMES OF INTEREST. GIVEN VOLUME OF EACH AVOI IN THE 
TABLE IS THE RATIO OF THE TOTAL VOLUME OF THE AVOI IN BOTH 

HEMISPHERES TO TOTAL VOLUME OF THE BRAIN. GIVEN DISTANCE IS THE 
DISTANCE OF THE CENTER OF GRAVITY OF EACH AVOI TO THE CLOSEST MEG 

CHANNEL.  

AVOI AVOI Name Vol. (%) Dist. (mm) 
1 Precentral 2,68 42,04 
2 Frontal_Sup 2,47 55,82 
3 Frontal_Sup_Orb 0,34 68,37 
4 Frontal_Mid 4,32 51,46 
5 Frontal_Mid_Orb 0,96 56,46 
6 Frontal_Inf_Oper 1,37 48,21 
7 Frontal_Inf_Tri 2,33 49,36 
8 Frontal_Inf_Orb 1,92 56,31 
9 Rolandic_Oper 1,10 53,01 

10 Supp_Motor_Area 1,65 48,84 
11 Olfactory 0,27 87,89 
12 Frontal_Sup_Medial 3,23 54,19 
13 Frontal_Med_Orb 1,17 69,69 
14 Rectus 0,69 85,30 
15 Insula 1,51 61,22 
16 Cingulum_Ant 1,37 70,46 
17 Cingulum_Mid 2,68 63,78 
18 Cingulum_Post 0,41 83,16 
19 Hippocampus 0,89 78,33 
20 ParaHippocampal 0,89 83,03 
21 Amygdala 0,21 82,63 
22 Calcarine 2,40 68,94 
23 Cuneus 1,65 58,86 
24 Lingual 2,06 75,87 
25 Occipital_Sup 1,44 55,47 
26 Occipital_Mid 2,81 53,52 
27 Occipital_Inf 1,10 53,72 
28 Fusiform 2,40 75,03 
29 Postcentral 3,16 43,99 
30 Parietal_Sup 0,96 42,77 
31 Parietal_Inf 1,78 44,19 
32 SupraMarginal 1,78 44,81 
33 Angular 1,65 48,21 
34 Precuneus 3,09 60,04 
35 Paracentral_Lobule 0,55 39,30 
36 Caudate 0,62 83,09 
37 Putamen 0,96 72,20 
38 Pallidum 0,21 85,70 
39 Thalamus 1,10 86,07 
40 Heschl 0,27 72,59 
41 Temporal_Sup 2,81 51,12 
42 Temporal_Pole_Sup 1,37 54,92 
43 Temporal_Mid 4,80 53,82 
44 Temporal_Pole_Mid 1,24 57,28 
45 Temporal_Inf 2,61 58,14 
46 Cerebellum 7,69 58,66 
47 Vermis 1,03 62,03 

Import Data 
Resting State Data,  

Anatomical Information 

Source Localization 
Boundary Element Model 

LCMV Beamformer 

Dimension Reduction 
Principal Component 

Analysis (PCA) 

 

Connectivity Analysis 
Bicoherence Analysis 

Statistical Analysis 
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Fig. 3. Representation of AAL Atlas. Different colors are used for separate 
AVOIs.  

(ii) Dimension Reduction: Source level data dimension was 
reduced using PCA. AAL Atlas was used to separate the data 
into 116 anatomical volumes of interest. PCA reduction was 
carried out in a way that each region preserved 90% of its 
information. Depending on the information content of the 
region, some regions preserved more than one time-series. The 
number of virtual time-series is subject specific, ranging from 
210 to 280 with the average of ~250. Fig. 4. shows an exemplary 
PCA Dimension Reduction.  

 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Dimension Reduction Using PCA. An exemplary AVOI is shown for 
visualization. PCA was used to reduce four source-space signals in an AVOI to 
a  single representative signal.  
 

(iii) Bicoherence Estimation: HOSA Toolbox [24] was used 
for bicoherence estimation in this study. Data were segmented 
into non-overlapping 256 sample Hanning windows. The mean 
was removed from each record and the Fast Fourier Transform 
was computed. Both window type and window length reduce 
the frequency resolution of Discrete Fourier Transform, leading 
to a 4 Hz of spectral resolution limit. However, for the sake of 
brevity and proper display, during calculations, number of FFT 
points was set to sampling frequency, leading to 1 Hz of visible 
frequency resolution in figures. This is achieved by 
interpolation method applied by Matlab’s ‘fft’ implementation. 
For each subject, bicoherence matrix was calculated NN times 
where N is the number of virtual time series. Calculation of 
cross bicoherence between time-series x(t) and y(t) is given as 
below; 

 
 

𝑏௜௝ =
|𝐸{𝑋(𝑓ଵ)𝑋(𝑓ଶ)𝑌∗(𝑓ଵ + 𝑓ଶ)}|ଶ

𝑆௑(𝑓ଵ)𝑆௑(𝑓ଶ)𝑆௒(𝑓ଵ + 𝑓ଶ)
 

 
where superscript ∗ denotes complex conjugate and E{} is the 
statistical expectation operator [27]. Here, X and S denote 
Fourier coefficients and spectra respectively.  

(iv) Confidence Level Calculation and Acquisition of 
Bicoherence Matrices: An empirical confidence level for each 
subject was calculated using Bootsrapping Resampling Method 
[28]. Randomly chosen 5 virtual time-series pair was used for 
calculation. For each pair, one of the signals was divided into 
256 sample pieces and shuffled 100 times to calculate 
bicoherence repeatedly. As a result, 500 different bicoherence 
matrices were produced for each subject. For each frequency 
pair, the 95% limit of the distribution of 500 values was 
assigned as the confidence level for that particular frequency 
pair of the processed subject. Acquired confidence level matrix 
was used for each subject to threshold the calculated 
bicoherence matrices. Values of frequency pairs above 
confidence level were accepted significant and represented with 
‘1’. The remaining values were assigned ‘0’, making a binary 
matrix. Entire sets of bicoherence matrices calculated for each 
subject were used to calculate the percentage of significant 
bicoherence of each frequency pair. Calculated Bicoherence 
results and confidence level matrices are averaged across 
subjects for evaluations. 

(v) Statistical Analysis: We averaged the values of diagonal 
(128 elements) and non-diagonal (8128 elements) components 
separately. One-tailed t-test was used with the hypothesis that 
there is more nonlinear interaction at the main diagonal slice 
than there is at the non-diagonal slices.  

III. RESULTS 

Averaged bicoherence matrix across subjects is given at Fig. 
5. Results show that there are several important interactions 
within and cross frequency bands. Each pixel in the matrix 
represents information content of each frequency bin (128128) 
in terms of percentage of significant bicoherence. Frequency 
bins greater than (35-35 Hz.) are disregarded due to low or no 
information. As expected at resting state data, the most 
prominent interaction is visual at the alpha band (8-12 Hz.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Total Bicoherence Results. Color Bar indicates percentage of each pixel 
showing significant bicoherence at corresponding frequencies. Note the 
interactions at Alpha Band (8-12 Hz). 
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The confidence level matrix on the other hand, shows 
interactions gathered around the main diagonal (𝑓ଵ = 𝑓ଶ ).  
Fig. 6 shows one-sided confidence level matrix averaged across 
89 subjects.  It is observed that the confidence level tends to 
increase as the slices approach the main diagonal and 
maximizes at the main diagonal, reaching double the confidence 
level of non-diagonal components. Increase in the confidence 
level suggests an increase in the information content. 

Confidence levels located in each slice is averaged in order 
to investigate the distribution further. The reduced confidence 
level graph is shown at Fig. 7. It is important to note that the 
first 4 slices have higher confidence level and the confidence 
level decreases gradually until the 5th slice. The ratio of decrease 
is much less after the 4th slice and the confidence level tends to 
maintain throughout the rest of the matrix. Authors attribute this 
pattern to 4 Hz. frequency resolution. In order to evaluate the 
information content of components at the main diagonal, first 4 
slices are identified as the diagonal components and the rest of 
the components are identified as non-diagonal components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Empirically Calculated %95 Confidence Level Matrix.  Color Bar 
indicates confidence level averaged across subjects. Confidence level increases 
as the slices approach the main diagonal, reaching double the confidence level 
of non-diagonal components. 

 
 

 
 
 
 
 
 
 
 

 

Fig. 7. Reduced Confidence Level. First 4 slices belonging to the main digonal 
show higher confidence levels. The number of slices is due to 4 Hz spectral 
resolution limit of bicoherence estimation.  

Mean and Standard Error of diagonal and non-diagonal 
components are given at Fig. 8. We evaluated the information 
content of bicoherence matrix for each subject and each AVOI. 
As the figures also suggest, one-tailed t-tests for each condition 
rejected the null-hypothesis (p<0.05), implying a clear 
separation in means of information content between diagonal 
and non-diagonal components.  

IV. CONCLUSION  

Results showed that the most prominent nonlinear 
interactions, particularly QPC is found on the main diagonal and 
‘sliced bicoherence’ is a sufficient method to evaluate 2nd order 
nonlinear interactions within the resting-state brain. Hence a 
reduction in the computational burden is possible by using 
efficient estimation methods suggested by [16]. This does not 
mean to suggest that the rest of the bicoherence matrix should 
be ignored especially for other brain conditions. Further studies 
at different paradigms are required to uncover the true nature of 
the main diagonal slice of the bicoherence matrix.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Mean and Standard Error of Diagonal and Non-Diagonal Components at 
both subject (A) and AVOI level (B). Mean and Standard Error indicates 
percentage of cross-coupling at either diagonal frequencies or non-diagonal 
frequencies. Figures show clear separation between diagonal and non-diagonal 
components in means of information content.   
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