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Abstract—Our goal in this paper is to devise a strategy for
finding the optimal trade-off between the transport and caching
energy costs associated to the delivery of contents in information
networks. The proposed strategy is proactive with respect to the
users’ requests, as contents are pre-fetched depending on the dis-
tribution of their (estimated) popularity. In particular, we propose
a k-center dominating set strategy to find the optimal clustering
and then locate the best places to store/replicate the most popular
contents. Then we develop a dynamic energy-efficient, strategy
that jointly optimizes caching and delivery costs within each
cluster. Although the formulated problem is a binary problem,
we will show as it can be solved for moderate size networks by
using efficient solvers. The performance gain reached through
the proposed proactive strategy are then assessed by numerical
results.

Index Terms—Proactive content delivery, in-network caching,
energy efficiency, information centric networking.

I. INTRODUCTION

In-network content caching has received considerable atten-
tion in recent years as an effective way to address the explosive
growth in Internet traffic of content access to sources such
as YouTube, Netflix, Bit Torrent, etc. This rapid increase of
content delivery in Internet has motivated the development
of novel networking paradigms such as Information Centric
Networking (ICN) that integrates content delivery as a native
network feature and then it is better suited for efficiently
accessing and distributing contents [1], [2]. One of the main
benefits of ICN is to reduce user content access delay and
network bandwidth usage by storing the contents at the
network edge close to the end user. ICN is based on named
data objects, for example, web pages, videos, documents, or
other pieces of information. In contrast, current networks are
host-centric since communication is based on named hosts, for
example, web servers, PCs, mobile handsets. In ICN network,
devices are equipped with storage capabilities to cache content
as it is request by end user, so that access ICNs are able to
cache the most popular content locally and store them near the
users in the network. Therefore every node actively contributes
in content caching to reduce the network congestion, the
access delay and origin servers’ load [3], [4]. Several content
caching strategies have been proposed to maximize local hit
rate, or the fraction of requests served by a given cache. The
optimal placement of information objects in content delivery
networks minimizing the access cost is investigated in [5].
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A game theoretic approach to jointly find the caching and
pricing strategy for popular content delivery was proposed
in [6]. Some works [7], [8] address the problem of finding,
in a static way, jointly the optimal placement and routing
of information objects in cache networks to minimize the
network energy consumption. In [7] the authors investigated
the minimum energy consumption problem in content-centric
networking (CCN) for optimal cache locations. The problem
of finding the optimal content access delay minimizing the
request routing and content caching in heterogeneous networks
has been investigated in [9]. Clearly, an effective caching
strategy builds significantly on the ability to learn and predict
users’ behaviors. This capability lies at the foundation of
proactive caching [10] and it motivates the need to merge
future networks with big data analytics [11]. An alterna-
tive approach to proactive caching, based on reinforcement
learning to learn file popularity across time and space, was
recently proposed in [12]. The authors in [13] developed a
strategy to minimize the long-term average energy cost of
content delivery based on Markov decision process. Different
distributed dynamic content replacement strategies that refresh
the caches contents as they travel through the network have
been proposed in [14], [15]. The work in [15] considered the
problem of finding the time evolution of the optimal placement
and routing of contents which minimizes the sum of the
transport and caching energies.
In this work we consider a joint proactive caching and routing
strategy aiming at minimizing the sum of the caching and
transport energy consumption in edge cloud networks [16]
where the objects to be delivered are stored at edge nodes.
By hinging on the strategy proposed in [15], we devise
a proactive in-network caching method based on an-online
popularity learning of the object contents. In particular, the
cost of caching the information objects comes to depend
dynamically on the local and global popularity of the ob-
jects, by forcing nodes to host the most frequently requested
contents. Furthermore, the decision on which locations have
to be repository nodes which host permanently the object
contents, depends on the object popularity and on the network
topology. The nodes that are able to reach the others with
the minimum paths have to be preferred in order to save as
much as possible the transport energy consumption. Hence, in
this paper we proposed a k-center dominating set strategy to
find the optimal clustering and, then, properly select the most
convenient nodes where replicate contents. Then, we jointly
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optimize the transport and caching energy by formulating a
binary optimization problem whose optimal solution is found
by using an optimization solver based on the branch and bound
algorithm.

II. NETWORK MODEL

Let us consider a transport network represented by a graph
G = (V, E ,K), composed of a set of nodes V , a set of links
E , and a set of information objects K, as illustrates in Fig. 1.
We assume that contents can be permanently or temporarily
stored over the nodes of this graph or travel through its edges.
More specifically, in Fig. 1 we denote with disks the repository
nodes where the contents are permanently stored, and with
circles the nodes where contents may appear and disappear,
according to users’ requests and network resource allocation.
To simplify our formulation we assume that all contents can
be split into objects of equal size, identified by the index k ∈
K. Each node and edge is characterized, respectively, by a
storage and transport capability. We assume that time is slotted
with slots of fixed duration ∆τ and, we observe time frames,
each composed of T time slots. At time slot n each node
u ∈ V in the network can act as a repository node of a set
of information objects Ku[n] ⊆ K, and can request a set of
information objects Qu[n] ⊆ K. Let us denote with q[n] ∈
{0, 1}|V||K| the request arrival process such that qu[k, n] = 1 if
node u requests object k at time n, and qu[k, n] = 0 otherwise.
The random process q[n] depends on the time evolution of the
contents’ popularity that is modelled as a Poisson process. The
average arrival rate Puk[n] at node u for object k follows the
Zipf distribution, i.e. [17]

Puk[n] = βu[n]
ruk[n]

−αu(n)∑|K|
k=1 ruk[n]

−αu(n)
(1)

where αu(n) is the Zipf parameter, βu[n] represents the
request rate of node u at time n, and ruk[n] is the rank of
object k at node u at time n. From (1), we can associate
to each time frame s, a local and global popularity measure,
respectively, P̄ luk[s] and P̄ gk [s], defined as

P̄ luk[s] =

∑T
n=1 qu[k, n]∑T

n=1

∑|K|
k=1 qu[k, n]

(2)

and

P̄ gk [s] =

∑T
n=1

∑|V|
u=1 qu[k, n]∑|V|

u=1

∑T
n=1

∑|K|
k=1 qu[k, n]

. (3)

Therefore, we assume that the objects popularity dynamically
evolves in time according to the following local and global
rules

P luk[s] = P̄ luk[s] +
s−1∑

m=−∞
ηs−1−mP luk[m] (4)

P gk [s] = P̄ gk [s] +
s−1∑

m=−∞
ηs−1−mP gk [m] (5)

where η ∈ (0, 1) is a forgetting factor, taking into account all
the previous probability, and whose value can be assigned in

order to weight differently the popularity evolution. The object
popularity plays a fundamental role in proactive caching since,
as we will see in the sequel, it enables us to associate a cost to
the caching depending on the object requests time evolution.

1 

2 

5 4 

3 

6 
7 

8 

9 
10 

11 

Fig. 1: New Jersey LATA optical network.

Hence, given a network, we can define a vertex signal over
its nodes and an edge signal over its edges. The vertex signal
su[k, n] is a binary signal defined ∀u ∈ V as:

su[k, n] =

{
1, if content k, at timen, is stored on node u

0, otherwise.

The overall information objects stored on node u, at time n,
can be written as Su[n] :=

∑|K|
k=1 su[k, n]. Similarly, we can

observe on the edges of the graph a transport flow signal,
defined as a binary signal, i.e., ∀uv ∈ E we have

tuv[k, n] =


1, if content k, at timen, is transported

over link uv from node u to node v

0, otherwise.

Since each link uv at time n can transport several ob-
ject information, the amount of transported content becomes
Tuv[n] :=

∑
k tuv[k, n]. Typically, each content may be hosted

on every node and moved whenever convenient to another
location, by meeting the storage and capacity constraints on
the nodes and edges of the network. Therefore, both Su[n]
and Tuv[n] belong to the following box constraints

0 ≤ Su[n] ≤ Su, 0 ≤ Tuv[n] ≤ Tuv, (6)

where Su is the storage capability of node u, whereas Tuv is
the transport capacity of link uv. One of the main characteristic
of caching is that it is fundamentally a dynamic process so that
cached contents can be placed in some nodes and removed
from others. We assume in our network model that there are
only some repository nodes, for instance nodes 1,3,4 in Fig.
1, that permanently keep contents or may access to a content
delivery network. Moreover, each content is hosted in at least
one repository node. Although an object content k ∈ K may
be stored at any time slot n in several repository locations, the
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cost in keeping contents in a node can be high, especially in the
case where the content is not frequently requested. Our goal
in this work is to devise a proactive caching strategy which
minimizes jointly the caching and transportation cost by taking
into account that the cost of caching strictly depends on the
popularity of the requested contents. Additionally, we propose
a strategy to select the repository nodes depending on both
the content popularity and the nodes centrality. Then, nodes
having the minimum distance in terms of hops from all others,
has to be chosen as repository nodes in order to save as much
as possible the transport cost.

III. TRADEOFF BETWEEN STORAGE AND TRANSPORT

One of the central challenges associated to caching is to
strike the best tradeoff between the cost of storing a content in
the network, possibly proactively, and the cost of transporting
(delivering) the content when and where requested. The first
question to answer is about the optimal number of replicas of a
given content. Intuitively speaking, the more copies of a file we
have, the smaller will be the delivery time, and viceversa. To
make this intuition formal we indicate the optimal number of
replicas as a function of the storage/transportation costs. Given
a network with N nodes, whose topology is represented by a
graph G = (V, E), we denote by B the N ×N matrix whose
entry Bij contains the length of the shortest path between
nodes i and j.

If Pj(`) is the probability that content ` will be requested
in the area served by access node j, the average (expected)
energy cost needed to deliver content ` from node i to the rest
of the network is

Ti(`) =
N∑
j=1

BijPj(`)T (7)

where T is the unit cost to transport a content object over one
link. If we wish to minimize this average cost and we can
store content ` in only one location, clearly the best location
is the one that minimizes the above cost, i.e.

i∗(`) := argmin
i∈{1,...,N}

Ti(`). (8)

Correspondingly, in case of storing content ` in a single cache,
the overall cost for delivering this content is

Ei∗(`) = S + Ti∗(`), (9)

where i∗ is computed using (8) and S is the energy cost for
storing a content unit. Let us consider now the more interesting
case where we wish to cache the same content in multiple
places and we ask ourselves about how many times to replicate
the same content and where to put these replicas. A possible
strategy is the following. If we want to replicate M times,
we can split the overall network in M clusters, individuate
a cluster head and place the content in the cluster head.
Different clustering techniques can be used, depending on the
chosen optimization criterion [18]: 1) given a number M of
clusters, find the cluster heads and the clusters that minimize
the distance of each node from its cluster head; 2) minimize

the number of clusters guaranteeing a maximum distance k
between a node in the cluster and the corresponding cluster
head. An important aspect, useful for the identification of the
best way to build clusters, is the concept of dominating set.
A dominating set of a graph G = (V, E) is a subset D ⊆ V ,
such that every node v ∈ V is either in D or adjacent to a
vertex of D. More specifically, a subset D ⊆ V such that
every node v ∈ V is within distance k neighborhood of some
vertex of D is called a k-distance dominating set. If we want
to ensure that a content will be delivered within at most k
hops, the optimal clustering strategy consists then in finding
the k-distance dominating sets and replicate the content in
the nodes belonging to the dominating set. Alternatively, if
we fix the number of clusters, we can look for the clustering
method that minimizes the maximum distance of each node
from its cluster head. This is an NP-hard problem, but there
exist heuristics to find approximate solutions in polynomial
time. In this paper, we used the approach proposed in [19].
If we denote by Cm the m-th cluster, with m = 1, . . . ,M ,
the overall cost for storing and delivering content ` using M
caches is then

E(`) = MS + T
M∑
m=1

∑
j∈Cm

BmjPj(`), (10)

letting j to vary within each cluster. We may expect that, as
M increases, the storage cost increases linearly, whereas the
transportation cost decreases. Then, we may expect to find a
unique optimal value of M that minimizes the overall delivery
cost. This optimal value depends on the ratio between the cost
of storing and the cost of transporting a content. A numerical
example is reported in Fig. 2 where we plot the total energy
consumption for storing the most popular content, among 200,
in a network of 300 nodes, versus the number of possible
clusters M , for S = 0.2T . We can observe that for M = 60
there exists an optimal trade-off between the cost of duplicate
the content in more cluster heads and the cost of deliver it.
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Fig. 2: Total energy cost versus the number of clusters M .

IV. PROACTIVE JOINT CACHING AND TRANSPORT
OPTIMIZATION

The fundamental issue in caching problem is to dynamically
allocate all contents by deciding, according to the users’
requests, when and where place all contents, how transport
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them in the network and when a node has to release them
to save memory. Then, the decision for caching content k at
node u, at time slot n, has to depend on both the energy
spent for storing the object, and the energy spent to transport
it from its current position to the user who requested it. By
making the caching cost dependent on the time evolution of
the popularity of the requested contents, the caching strategy
becomes proactive and context-aware. We define the energy
cost for storing a content k on node u during T consecutive
time slots, in the time window [n′ − T + 1, n′], as

Est[n
′] =

n′∑
n=n′−T+1

∑
k∈K

∑
u∈V

su[k, n]cu[k, n], (11)

where cu[k, n] is the time-varying energy cost for keeping
content k on node u at time n. For instance, from equations
(4), (5), we can define the caching cost of content k at node
u at time n as

cu[k, n] =
γ

1 + P luk[n]
+

1− γ
1 + P gk [n]

(12)

where γ ∈ [0, 1] is the trade-off coefficient between the local
and global popularity costs. Note that the cost cu[k, n] is
low for contents with the highest popularity to encourage the
storage of these frequently requested contents.
Then, we can define the cost associated to the content transport
as

Etr[n
′] =

n′∑
n=n′−T+1

∑
k∈K

∑
uv∈E

tuv[k, n]cuv[k], (13)

where cuv[k] represents the energy cost to transfer content k
over link uv. When content k is requested by user u, we can
associate to the user request a maximum delivery time Du[k]
within which the request must be solved.

We denote by Nu the set of nodes that are one hop away
from node u, i.e. the set of its neighbors. As discussed above,
a fundamental issue in proactive caching is to select the
repository nodes where the contents have to be stored as
long as the popularity does not change. To make this choice
proactive we associate at each node u a probabilistic measure
of its centrality

wu[k] =

∑
uv∈E

BuvPv[k]∑
v∈V Pv[k]

(14)

where Buv is the length of the shortest path between nodes u
and v and Pv[k] is the average popularity of object k at node
v. Therefore, according to (14) we can permanently store each
object k in the node u where wu[k] takes its minimum value,
i.e. in the node having the average minimum number of hops
from the nodes requiring content k. Hence, we proactively
define the set of repository nodes Vp where each u ∈ Vp hosts
a set of information objects Kpu. The state of the network, at
time slot n, is represented by the vector x[n] := [s[n]; t[n]],
with s[n] := (su[k, n])∀u,k and t[n] := (tuv[k, n])∀k,uv∈E .
Then, we define xT [n′] := [x[n′−T+1]; . . . ;x[n′]] as the state

vector during T consecutive time slots. Hence, our objective
becomes to minimize with respect to the state vectors the sum
of the caching and transport energies given in (11) and (13),
i.e.

Nf∑
n′=0

λEtr(xT [n′]) + Est(xT [n′]) (15)

where Nf is the number of observed time frames and λ is a
positive parameter controlling the ratio between transport and
storage energy costs. By extending to the proactive caching
the approach proposed in [15], we simplify our problem by
decoupling the objective function in (15) over each frame n′.
Then our goal is to find the state vector xT [n′], for each frame
n′, which minimizes the cost function

ET (xT [n′]) := λEtr(xT [n′]) + Est(xT [n′]) (16)

where we assumed in (13) a unit transport cost cuv[k]. Then,
for each time frame, we can formulate the proactive caching
optimization problem as

x̂T = arg minxT
λEtr(xT ) + Est(xT )

s.t. xT ∈ X (P)

where the constraint set X is defined as

X .
=



(a) qu[k, n] ≤ su[k, n] +
∑
v∈Nu

Du[k]∑
j=0

tvu[k, n+ j]

(b) su[k, n] ≤ su[k, n− 1] +
∑
v∈Nu

tvu[k, n− 1]

(c) tvu[k, n] ≤ sv[k, n− 1] +
∑
w∈Nv

twv[k, n− 1]

(d) su[k, n] = 1,∀k ∈ Kp
u, su[k, 0] = 0, k /∈ Kp

u

(e) Su[n] ≤ Su
(f) Tvu[n] ≤ Tvu
(g) su[k, n] ∈ {0, 1}, tuv[k, n] ∈ {0, 1},

∀u ∈ V, vu ∈ E , k ∈ K, n ∈ [n′ − T + 1, n′].

The above constraints reflect the storage and transport
conservation flow constraints [15]. In more detail:(a) assures
that if object k is requested by node u at time slot n, then
k either is already present in the cache of node u at time n
or it has to be transported to node u from a neighbor node
v ∈ Nu within Du[k] time slots; (b) ensures that if k is being
cached at node u at time n, then k either was in the cache of
u at time n − 1 or was received by node u from a neighbor
node v ∈ Nu at time n − 1; (c) imposes that if object k is
delivered to node u from a neighbor node v ∈ Nu at time n,
then this object either was in the cache of v at time n− 1 or
was transferred to u from a neighbor node w ∈ Nv at time
n − 1; (d) forces the initial condition constraints that assure
a proactive selection of the repository nodes that always store
the objects in Kpu, and at n = 0 nothing else; (e) and (f)
force the storage and transport capacity constraints; (g) states
the binary nature of the storage and transport variables. Note
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that problem P is hard to be solved for large network size
because of its combinatorial complexity. However, how we
will show next, it can be solved efficiently, for moderate size
networks, by using a numerical solver based on the branch
and bound algorithm. To numerically test the efficiency of
the proposed caching strategy we consider the 11 nodes New
Jersey LATA network illustrated in Fig. 1. We use to solve
problem P the cvx binary solver Mosek based on the branch
and bound algorithm. We consider the delivery of |K| = 10
contents during time frames of T = 15 slots, each of duration
∆τ = 1. The maximum delivery Du[k], is set equal to 4,
that is the maximum distance in number of hops between two
nodes in the network. The objects popularity follows a Zipf
distribution with a high parameter value αu = 2.5, ∀u, to
increase the skewness of the popularity profile. The forgetting
factor is set to η = 0.7 and the trade-off coefficient for the
popularity to γ = 0.8. We averaged the final results over
Nf = 50 time frames. In Fig. 3 we report the transport gain
in terms of number of hops reduction with respect to the non-
proactive caching strategy [15] where the content popularity
does not affect the optimization process. The transport gain

5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

35

40

45

λ

G
h

Fig. 3: Number of hops gain Gh versus λ.
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Ē
T
(x̂

T
)

 

 

Non−proactive caching

Proactive caching

Fig. 4: Total average energy cost comparison versus λ.

is defined as Gh
.
= nnh − n

p
h where nnh and nph are the average

number of hops, respectively, in the non-proactive and in the
proactive algorithms. From Fig. 3 it can be observed as Gh
increases when the transport cost λ decreases, since, in this
case, the objects transport is favoured by the proactive caching.
Finally, in Fig. 4 we plot the energy consumption comparison
between the proactive and non proactive algorithms versus the

parameter λ. Note that proactivity leads considerable energy
savings for low λ values, taking benefit from the optimal
transport strategy.
In summary, in this paper we showed as a cluster-based
strategy, aided by the content popularity, can be used to
properly select the nodes where replicate object contents. A
joint proactive caching and transport optimization strategy has
been proposed to favour caching of the most popular contents
and to decrease the transport cost, by taking advantage of the
reduced number of hops needed to delivery contents.
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