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Abstract—In Cognitive Radio, spectrum sensing methods
can be classified in three categories: temporal, frequential
and hybrid (temporal and frequential) methods. Temporal
methods require a long observation period; frequential and
hybrid methods have a high calculation cost and they are
very sensitive to frequency resolution. In very low signal-to-
noise ratio (SNR) and non-cooperative conditions, spectrum
sensing methods present some limitations. To overcome
these shortcomings, we propose a new blind strategy to
detect the unoccupied spectral bands during a very short
observation period. This new strategy is a temporal method
based on Recurrence Quantification Analysis (RQA) of the
received signal. Since the recurrence level in a commu-
nication signal is different from that of White Gaussian
Noise, the detector can evaluate the recurrence level of the
observed signal to detect the presence of a communication
signal over a given spectral bandwidth. First, we estimate
the three fundamental parameters of the recurrence matrix:
the time delay parameter, the embedding dimension and
the recurrence threshold. With these parameters, during
a detection stage, the detector evaluates the recurrence
level through the recurrence rate and compare it to a
predetermined threshold estimated in absence of the signal
of interest. The spectrum sensing based on RQA is very fast,
free of frequency resolution issue and able to distinguish
communication signal from a White Gaussian Noise. The
results of our simulations prove the robustness of proposed
RQA detector acting over limited number of samples and
under very low SNR conditions.

Index Terms—Cognitive Radio, Spectrum Sensing, Re-
currence Quantification Analysis, Embedding parameters,
Mutual Information, False Nearest Neighbours.

I. INTRODUCTION

The need to make better use of the radio spectrum
is leading to the development of new spectrum access
strategies. Among these strategies, the opportunistic ac-
cess proposed in Cognitive Radio allows a sharing of
spectral bandwidth between two categories of users:
Primary Users “PU” and Secondary Users “SU”. PU
is the one who holds the license of a bandwidth; and
SU are all other opportunist transmitters. In this context,
the main challenge for opportunistic users (SU) is the
detection of unoccupied spectral bands. Many methods
of spectrum sensing such as Energy Detection (ED),
Waveform Detection (WFD), Cyclostationary Features
Detection (CFD) have been developed [1]-[4]. However,

most of these detectors suffer from certain limitations.
We can mention among others a very high computational
cost, an inefficiency in very low Signal Noise Ratio
(SNR) conditions, a prior knowledge of PU’s signal
characteristics, etc. In this paper, we propose a new
blind strategy to detect the state of PU’s activity. This
new strategy is based on the Recurrence Quantification
Analysis (RQA) of the received signal. The recurrence is
a fundamental characteristic of many dynamical systems.
The quantification of this recurrence can be used to find
out some intrinsic features of systems such as hidden
periodicities, stationarity or non-stationarity, linearity or
non-linearity properties. In radio communication, due
to transmission technics, the transmitted signals contain
hidden periodicities. From this idea, we propose to
use Recurrence Quantification Analysis (RQA) tools to
detect if the spectrum allocated to PU is free or occupied.
Since PU’s signal contains recurrent states, the SU can
be able to evaluate the recurrence level contained in
the observed signal by using RQA tools. And then,
by comparing the recurrence level to a predetermined
threshold, SU can make a decision about the presence
or not of PU on a given spectrum. The starting point of
RQA is the recurrence plot (RP). The RP is a graphical
representation of the recurrence matrix [5]. The behavior
of RP depends strongly on three fundamental parameters:
the time delay 7, the phase space dimension m and the
recurrence threshold €. The time delay 7 and the phase
space dimension m are called embedding parameters [6].
In order to observe all intrinsic features contained in the
signal, we must choose the optimal values of 7, m, €. As,
RP is a visual analysis tool, its analysis is not objective.
For this raison, RQA tools are used to obtain objective
analysis [5,17]. In our work, Recurrence Rate (RR) is
used as a RQA tool.

The rest of this paper is organized in five sections. In
section II, we present the concepts of recurrence analysis.
After that, we detail the RP construction principle in
section III. Sections IV and V deal respectively with our
proposed detection model and its performance analysis.
The last section concerns the conclusion and perspective
for future works.
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II. CONCEPT OF RECURRENCE ANALYSIS

Recurrence analysis come from the fact that during
its evolution, some states of a dynamical system can
be reproduced several times. The different states of the
system form the phase space of the system. Each state is
called the state vector and is defined by state variables.
The number of state variables required to define a state
vector is the dimension of the system’s phase space.
The temporal evolution of the system is defined by the
evolution equation which allows to determine the state
of system at any time. Modelling this evolution equation
is a very complex task. In practice, we don’t observe
a phase space object but time series, as a sequence
of scalar measurements [5,7]. From this time series,
we should reconstruct the phase space. The standard
strategy for the phase space reconstruction is delay-
coordinate embedding [6,7]. Specifically, we construct
m—dimensional state vectors X,, from m time-delayed
samples of the measurement y,,:

Xn = [ynayn—‘rayn—%-,-~~7yn—(m—1)7—] (1)

where 7 and m are respectively the time-delay parameter
and the embedding dimension (dimension of the phase
space). In order to detect the maximum recurrence in
the time series, one must use the optimal values of 7
and m. Many algorithms are proposed to estimate the
optimal values of 7 and m [7]-[11]. Here, we use Mutual
Information (MI) to estimate the time delay 7 and False
Nearest Neighbours (FNN) algorithm [10] to estimate m.

A. Estimation of time delay parameter T

Experiment noise can generate statistical dependence
among the subsequent vectors X,,. Hence, the time delay
7 has to be chosen in order to reduce this statistical
dependence [5]. We distinguish three methods to deter-
mine the optimal 7: autocorrelation function, MI and
geometrical approach. In this work, we use MI to de-
termine the optimal time delay 7 because it can measure
the general dependence between two random variables.
Therefore, it provides a better criterion for the optimal
time delay 7. The optimal 7 corresponds to 7 value
which produces the first local minimum of MI [12]. Let’s
Y1, ..., Yk be K random vectors with a joint probability
distribution fy, . vy (y1, ..., yx) and marginal probabil-
ity density functions fy, (y1), ..., fyx (yx ), mutual infor-
mation between these vectors is defined as the Kullback-
Leiber divergence between two probability distributions

H?:lfyk (yk) and th---,YK (yla ~-~7yK):

i) fric (W) )}

le,...,YK (ylv 7yK)

I(Yy,..,Yg) = —-E [log(

I(Y1,...,Yk) is non-negative, and it becomes zero if and
only if random vectors are independents [13]. MI can be
defined with the entropy H [13]-[15]:

K
I(Y1,...Yk) =Y H(Y:) = HY1,..,Yk) (3)
k=1

where: H(Y) = — Zfil fy (y:) log |:fY(yz):|

We can distinguish two widespread methods to esti-
mate MI. The first is based on a partionning of space de-
fined by the two systems of interest X and Y. The second
used the k-nearest neighbor statistics. In this paper, we
use the k-nearest neighbor statistics approach proposed
by Kraskov et al. [15]. In our case, we should determine
for which value of the time delay 7, a noisy communica-
tion signal y(n) and its delay version y(n — 7) become
independent. At first, we estimate the mutual information
Iy(n),y(n—7)] for 7 € [0,N] with N being the
number of samples contained in y(n). Then, we choose
7 as the first minimum value of I [y(n),y(n — 7)].

B. Estimation of embedding dimension m

From the literature, we notice three basic approaches
to estimate the optimal embedding dimension m [9]-
[11,16]. The most used is the False Nearest Neighbours
(FNN) method. In this paper, we use the FNN algorithm
developped by Cao in [11], because of its simplicity and
its low calculation cost. The principle is the following:
if m is qualified as the optimal embedding dimension
by the embedding theorem [6], then any two points
which stay close in the m — dimensional reconstructed
phase space will be closed in (m + 1) — dimensional
reconstructed phase space. Such a pair of points are
called true neighbors, otherwise, they are called false
neighbors. Perfect embedding means that no false neigh-
bors exist [11,16]. The first parameter which helps to
determine the FNN is defined by:

a(i,m) _ HXimH - Xj

1Xi,, = X
where ¢, = 1,2,..,N — m7. X; ., is the recon-
structed state vector with embedding dimension (m—+1):
Xipesr = WisYier>Yi—2ry - Yi—m=]s X}, is the nearest
neighbor of X; in the m — dimensional reconstructed
phase space and ||.|| , denotes the maximum norm, i.e.,

| X, — X

Jm

m+1Hoo (4)

| o0

m

im N Yitkr — Yjrrrls  (5)
a(i,m) can be viewed as a neighborhood criterion. The
major drawback here is that a(i,m) changes with the
considered state vector X;. To overcome this matter, the
mean value of all a(i,m) is used:

1 N—mt
E(m) = N Z a(i,m) (6)
=1

E(m) depends only on the dimension m and the lag 7.
To investigate its variation from m to m + 1, the ratio
R(m) is calculated:

E(m+1)
E(m)
By plotting R(m), we notice that R(m) becomes con-

stant when m becomes greater than a defined value my.
In this case, (mg+ 1) becomes the minimum embedding

R(m) = (N
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dimension [11]. The embedding parameters m and 7 are
necessary to construct the Recurrence Plot (RP).

III. RECURRENCE PLOT

Recurrence plot (RP) is a visual tool showing the
behaviour of recurrences contained in a signal. It is
defined by the recurrence matrix [5,17]:

’} (8)

where 4,57 = 1,...,M and M = N — (m — 1)1 is the
number of reconstructed state vectors X,;, /N denotes the
number of samples contained in the observed signal;
¢ is the recurrence threshold and O(.) represents the
Heaviside step function and ||.|| is a norm. We use here
Ly — norm. On the plot, recurrence is represented by
a black dot. The main challenge to define recurrence
among the different state vectors is the choice of the
adequate recurrence threshold €. If € is chosen too small,
there may be almost no recurrence points and we cannot
learn anything about the recurrence structure contained
in the signal. On the other hand, if £ is chosen too
large, almost every point is a neighbour of every point
leading to a lot of false recurrences. Consequently, we
have to find a compromise about ¢ value. There are
many approaches to estimate € [17,18]. In our detection
model, the signal of interest is corrupted by the noise. In
order to obtain similar result as for noise-free situation,
the value ¢ = b0y, is proposed in the literature. oy
is the standard deviation of the White Gaussian Noise
(WGN). However, this value is not adequate for very
low SNRs (SNR < —10dB) nor very high SNRs
(SNR > 20dB) conditions. Another drawback with this
relation is that the detector should know the noise vari-
ance o7, before defining recurrent states. To overcome
these issues, we chose empirically ¢ = 30, where o,
denotes the standard deviation of the received signal
y(n). Visual analysis of RP is not objective because
differents observers can see things differently. For this
raison, Zbilut and Webber introduced some definitions
and procedures to quantify RP structures [19]. In the
literature, we have five classical tools for RQA [5]. In
our detection model, we use the reccurrence rate (RR) as
the detection criterion. RR is the measure of the relative
density of recurrence points in the sparce recurrence
matrix and is defined by [5]:

(g,m)
R;j @{{-ZH XifXj

M M

RR(e, M) = # STSTRE™ ©)

i=1 j=1
where M = N—(m—1)7 and N the number of samples
contained in the observation y(n).

IV. DETECTION MODEL

The aim of our work is to detect the presence or
absence of communication signal on a given spectrum.
Let y(n) be the observed signal containing N samples:

y(n) = ns(n) +b(n) (10)

where s(n) denotes the communication signal and b(n)
an AWGN. 7 is a binary variable (n = 1 if there is
presence of a communication signal else 1 = 0).

Let us consider the following hypotheses Hy and Hy:

e Hj : absence of communication signal; n = 0
e H;p : presence of communication signal; n =1

The detection principle is to compare the RR of the
observed signal to a predetermined threshold Agrp to
make a decision. During the spectrum sensing stage,
the detector evaluates the RR(e,N) and applies the
following criterion:

H,y
RR(e,N) 2 Arr

Ho

(11)

ArR is the Recurrence Rate estimated when there is no
communication signal on the spectral band. By perform-
ing several Monte Carlo simulations, we noticed that
Argr can be modelized by a random variable depending
on SNR. The following lines present the analyical
expressions of the distance matrix D components d; ;
(equation (12)), recurrence condition in WGN (equation
(14)) and detection threshold Agr (equation (15)). From
(10) and (1), we can write:

4 =X — X
=m(67 +67) + m(i; + i5) — 2mE [X; X]']
12)

where 67, &jz, fii and fi; are random variables and
represent respectively the estimation of variance and ex-
pectation of the different state vectors X; and X;. Hence,
for a received signal y(n), the components d; ; of the
distance matrix D can be modelled as a random variable.
X[ denotes the Hermitian vector of X;. In the case
where y(n) = b(n), if we suppose that b(n) is a centered
WGN (E[b(n)] = 0 = E[X;] = E[X,] = 0)
equation (12) becomes:

13)

(14)

As the detection threshold Appr corresponds the RR
when there is no communication signal on the spectrum,
we can write that:

2
Arp = P {&EJF&]? < 6} (15)
m
Equation (15) shows that the detection threshold is inde-
pendant of modulation technics. Arr depepends on the
state vectors energy. Let z;; = 62 +&j2 be a realization of
the random variable Z. The next step is to determine the
Probability density function (Pdf) of Z. Let us consider

: R 1
the random variable ¥ such as ¢p = N67 = >/ " b7,
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and fy (1) the Pdf of U. fy(v)) can be approximated by
a x? Pdf with m degree of freedom:

1 P
B =k e[ Y]
(V2T (%) 2
where T'(z) is Euler’s Gamma function. Because 67 and

Af are independant, we can write:

(16)

fz(2) = (fu * fu) (2)
-3 oo m 17
:(32727”/ [u(z —u)]2 " du {17)
2T (%) Jo
Considering the cumulative density function Fz of f,
we obtain:
&2
Arr = Iz () (18)
m
Hence:
Iarr(r) = frRR/H, () = f2(r) (19)

Simulations show that the probabilty density functions
frR/H,(r) and frp g, (r) of RR under Hy and H,
overlap (Figure 1). The main difficulty is to determine
an optimal value of Apgr in order to minimize detec-
tion errors according to the Neymann-Pearson detec-
tion theory [2,20]. Because detection errors are mainly

Histogram of RR based on SNR from -40 dB to 40 dB
T T T

— Histogram of f_ RR/H_0
501
— GEV distribution

— Histogram of f RRIH_1

N
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= Approximated Pdf of f RRIH1

w
s
T

Density (.1072)

~
S
T

QOverlapping region

ﬂﬂﬁ_ﬂ

0.2 0.25 03 0.35 04 045
Recurrence Rate Value

Fig. 1: Histogram of RR under hypothesis Ho and Hi. The
probability density functions frr,m,(ry and frr,m, (1) of RR
under Ho and H; overlap. Arr must be chosen to maximize
detection probability and minimise probability of false alarm.

from Probability of False Alarm (Py,), we estimate
frRr/H, (7). And then, based on Pr,, we calculate
the corresponding optimal value of detection threshold
Arr. Equation (17) gives the analytical expression of
JRR/H, (r). From Kolmogorov-Smirnov test, we can also
reliably approximated frr/m,(r) by the Generalized
Extreme Values distribution

1 r—pu —¢1
fRR/Ho(T;/’L7Ua§):; |:1+§< p ):l X

exp{— [1+5 (’“;“)}é} (20)

where ¢ is the shape parameter, o stands for the scale
parameter and p represents the location parameter. Us-
ing the minimizing quadratic error principle, we have

estimated these parameters and obtained the following
values: £ = —0.17, 0 = 0.0056 and p = 0.085. With the
equation (21), we have calculated the threshold detection
optimal Arp based on Py, value by using the inverse of
cumulative density function Frg,m,-

“+o0
Prq = [\ TrRR/H, (T)dr, 21

RR
Using the obtained threshold, we will analyze the
performance of RQA detector in the following section.

V. SIMULATIONS RESULTS

To evaluate robustness of the proposed algorithm,
we have tested our detection model on several kind of
signals (BPSK,16-QAM, 4-ASK) in low SNR conditions
(SNR < 0dB). In this paper, we present results about
16-QAM signals. For simulations we use parameters
from the table I closed to wideband wireless commu-
nication systems. Performing Monte-Carlo simulations,

Parameters Value
Sampling frequency 30.72 GHz
Data frequency 200 KHz
Carrier frequency 2.6 GHz
Number of samples 1000
embedding dimension m 8
Time delay 7 6
Recurrence threshold & 3oy

TABLE I: Simulation parameters

we generate Receiver Operating Characteristic (ROC)
curves. Fig. 2 shows the capability of our proposed
model to detect communication signal buried in noise
for different values of SN R. One can note through these
ROC curves that the proposed detector can reliably de-
tect communication signals in Gaussian channels where
SNR > —4dB. For example, when SNR = —4dB, our
detector can detect the communication signal with Py =
0.97 against Py, = 0.1. When SNR = —6dB, this
detector detects the communication signal with P; = 0.8
against Py, = 0.10. Hereon, we have confronted RQA
Detection (RQD) model to Energy Detection (ED) and
Cyclostationary Features Detection (CFD) algorithms.
ED is the most used detection method because of its
low implementation complexity. Recently works have
proposed a method to overcome the issue of the optimal
detection threshold for ED design [21,22]. The biggest
disadvantage with ED is the inability to differentiate a
communication signal from a white noise with high en-
ergy. The CFD is the best trade-off between complexity
and accuracy in detection strategy. However, because of
the cyclic spectrum estimation, it requires a very high
computational cost for high frequency resolutions [2,23].
Fig. 3 shows the Py of these three detectors in different
SNR values. Among these three detection algorithms,
the CFD is the most efficient. However, it requires a
very high computational cost and is very sensitive to the
frequency resolution. ED seems equally powerful, but it
is unable to differentiate the communication signal from
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a high energy noise. Unlike these two detectors, the RQD
has a low calculation cost and is able to distinguish a
communication signal from noise even with a low SNR.
Also, we notice that when SNR > —5dB, RQD has the
same performance that ED and CFD. The performance
of RQD can be signicatively improve by combining RR
with others RQA tools.

ROC ]’d = l’[1 for 16-QAM Signal

——SNR=-8dB
—6—SNR=-6 B

08 —+—SNR =4 dB

1Y

Probability of detection I

L L L L L I

0 o1 02 03 07 08 og |

04 o5 13
Probabilty of Felse Alarm P,

Fig. 2: Receiver Operating Characteristics (ROC). These re-
sults concern 16-QAM signal buried in White Gaussian Noise.

ROC of ED, CFD and RQD
T 5 ="

Probability of Detection I’

20 18 “16 4 kel

0 5 % 4 2 o
SNR (dB)

Fig. 3: Receiver Operating Characteristics of ED, CFD and
RQD for SNR € [—20;0] dB. When SNR > —5 dB, RQD
has the same performance like ED and CFD.

VI. CONCLUSION

This paper deals with the problematic of blind spec-
trum sensing in very low SNR conditions in Cognitive
Radio. We have proposed a detection model based on Re-
currence Quantification Analysis (RQA). RQA can reveal
and quantify the hidden recurrences in communication
signals . During spectrum sensing stage, Secondary User
evaluates the recurrence level contained in observed sig-
nal and compare it to a predetermined threshold in order
to make a decision. Our simulations show that RQA
is a powerfull method to detect communication signal
buried in noise. Using RQA in spectrum sensing is a new
and promising approach. Our current simulations using
recurrence rate allow to detect PU’s for SNR > —6dB
with a low probability of false alarm. In future works, we
propose to combine several RQA tools to force back this
limit to SIVR < —15dB to corroborate the efficiency of
RQA detection model.
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