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Abstract—In this paper, we have explored the effect of pose
normalization for cross-pose facial expression recognition. We
have first presented an expression preserving face frontalization
method. After face frontalization step, for facial expression
representation and classification, we have employed both a tra-
ditional approach, by using hand-crafted features, namely local
binary patterns, in combination with support vector machine
classification and a relatively more recent approach based on
convolutional neural networks. To evaluate the impact of face
frontalization on facial expression recognition performance, we
have conducted cross-pose, subject-independent expression recog-
nition experiments using the BU3DFE database. Experimental
results show that pose normalization improves the performance
for cross-pose facial expression recognition. Especially, when local
binary patterns in combination with support vector machine
classifier is used, since this facial expression representation and
classification does not handle pose variations, the obtained per-
formance increase is significant. Convolutional neural networks-
based approach is found to be more successful handling pose
variations, when it is fine-tuned on a dataset that contains face
images with varying pose angles. Its performance is further
enhanced by benefiting from face frontalization.

Index Terms—Expression preserving face frontalization, cross-
pose facial expression recognition, convolutional neural networks

I. INTRODUCTION

Facial expression plays a significant role in human-human
and human-machine interactions. Many real world applications
require automatic facial expression recognition (FER) under
unconstrained environments. Hence, facial images appearing
in various poses should be handled by the developed FER
systems. One way of addressing this problem is to perform
face frontalization to eliminate the variations in facial appear-
ance due to different views. However, it is critical to preserve
facial expression, while performing pose normalization.

Pose normalization has been used for cross-pose face recog-
nition [1]–[9]. On the other hand, these methods have not
been applied for facial expression recognition, since they
were mainly focusing on the identification aspects and were
not specifically developed for preserving facial expressions.
Existing pose normalization studies on face recognition can be
based on, for example, 2D methods [1]–[5] and 3D methods
[6]–[8]. In [9], homography-based normalization (HPN) has
been proposed utilizing both 2D and 3D methods to be able
to extract features according to each pose, also 3D facial
landmarks were mapped to each 2D face image.

Previous cross-pose facial expression recognition studies
have mainly focused on learning transformations in the fea-
ture space due to varying pose. Transductive transfer linear
discriminant analysis (TTLDA) method has been proposed
to transfer the label information from source facial pose to
unlabeled auxiliary target facial pose in [10]. In [11], dictio-
nary learning based framework has been introduced to learn
a cross-modality and pose-invariant dictionary that contains
3D shape and 2D texture information. Partial Least Squares
(PLS) method has been used to learn relations between pose
pairs, which belong to the same individual and same facial
expression from different pose angles in [12]. In [13], head
pose normalization based on given 2D locations has been
introduced, in addition, proposed Gaussian Process Regression
model has been applied to learn relationships between different
pose angles.

In recent years, besides hand-crafted features such as local
binary pattern (LBP), scale invariant feature transform (SIFT),
histogram of gradients (HoG), and Gabor filters, deep learning-
based methods, commonly convolutional neural networks
(CNNs), have been widely used in computer vision, such as
for object detection, object recognition, face and facial expres-
sion recognition. AlexNet [14], VGG [15], GoogLeNet [16],
and ResNet [17] are among the well-known and successful
architectures for image classification. Therefore, in this study,
after the face frontalization step, for facial expression represen-
tation and classification, we have employed both a traditional
approach, by using hand-crafted features, local binary patterns,
in combination with support vector machine classification and
a convolutional neural networks-based approach.

In this work, our main aim is to improve cross-pose fa-
cial expression recognition by employing facial expression
preserving face frontalization. To evaluate the impact of face
frontalization on facial expression recognition performance,
we have conducted cross-pose FER experiments using the
BU3DFE database [18]. The database consists of 3D models
from 100 individuals. Six basic expressions have four level of
intensity, thus six basic expressions are classified at different
intensity levels. Firstly, we apply pose normalization on non-
frontal face images, and train a model by using LBP features
with support vector machine (SVM) classifiers, and CNN
for facial expression classification. Experimental results show
that face frontalization increases cross-pose FER accuracy,
especially, when LBP features in combination with SVM
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classifiers are used. Since this facial expression representation
and classification does not handle pose variations, the obtained
performance improvement is very significant with 17% ab-
solute increase in average accuracy. CNN-based approach is
found to be more successful handling pose variations, when
it is fine-tuned on a dataset that contains face images with
varying pose angles. Its performance is further improved by
benefiting from the face frontalization. The obtained absolute
increase in average accuracy is 1.2%. The contributions and
main outcomes of this paper can be listed as below:

• We have investigated the effect of pose normalization
for cross-pose FER and have presented an expression
preserving face frontalization method.

• We have assessed the impact of face frontalization both
on a traditional FER approach, by using LBP features
in combination with SVM classification, and on a deep
learning-based approach.

• We have found that face frontalization improves cross-
pose FER performance significantly, especially, when the
face representation is not robust against pose variations.

• CNN-based approach has been found to be more suc-
cessful in handling pose variations, when it is fine-tuned
on a dataset that contains face images with varying pose
angles.

The rest of the paper is organized as follows: In Section II,
the proposed method is described in detail. Experimental
results are presented and discussed in Section III. Finally, the
conclusions are given in Section IV.

II. METHODS

In this section, the face frontalization process and facial
expression recognition methods are presented.

A. Pose Normalization

This section describes all the steps involved in the gener-
ation of a virtual frontal view from multiple cameras. The
process reconstructs the shape at first, then blends the textures
coming from different views into a common texture map. The
final image can be rendered using standard computer graphic
pipeline.

1) Notation: Following notation is used in this paper: Italic
capital letter T denotes tensor, bold capital letter M denotes
matrix, bold lower-case letter v denotes vector, and italic
lower-case letter s stands for scalar value. Operation on tensor
such as mode-n product is denoted by T ×n M or T ×n v.

2) 3D Face Model: Most of the morphable models used
nowadays are linear and usually capture a single attribute [19].
Building one that can address different types of variations,
such as identity and expression, increases the complexity and
difficulty. This process is simplified by assuming that the
identity and expression can be decoupled and each attribute
can be modeled on their own. Such decoupling can be achieved
by using the multilinear model as shown in [20].

The bilinear face model used in this work has been trained
using the FaceWarehouse database introduced in [21]. An
arbitrary face f can be generated as:

f = Cr×2 w>id×3 w>exp (1)

where Cr is the tensor model, w>id and w>exp are the weights
for identity and expression, respectively.

3) Fitting Method: The fitting method [22], which is based
on detected facial landmarks, relies on two assumptions:
1) There is a direct correspondence between vertices (i.e.
3D Points) and facial landmarks located in the image space;
2) The 3D surface can be recovered using only a small set of
control points (i.e. sparse measurements) [23]. Given a sparse
measurement vector ri ∈R2 f composed of f facial landmarks
for the ith image, equation (2) defines the relationship between
the reconstructed 3D surface and the facial landmarks, where
Pi represents the sparse vertices selection going from N to
f vertices (Pi : R3N → R3 f ) and Li models the projection
operator [22].

ri = LiPif = LiPi

(
Cr×2 w>id×3 w>exp

)
. (2)

The identity and expression weights can be estimated by
minimizing equation (3), the error between the projected
control points and the landmarks in each view.

Edata =
1
N

K

∑
i=0

∥∥∥LiPi

(
Cr×2 w>id×3 w>exp

)
− ri

∥∥∥2
(3)

Two additional terms Eid , Eexp are added to penalize the
magnitude of the deformation.

Eid =
∥∥∥w>id

∥∥∥2
Eexp =

∥∥∥w>exp

∥∥∥2
(4)

Finally, the objective function defined in equation (5) can be
solved using coordinate-descent approach to estimate identity
and expression parameters [20].

E = Edata +ηidEid +ηexpEexp (5)

In our experiments, setting ηid and ηexp to 0.5 and 0.1,
respectively showed satisfactory results.

4) Texture Generation: Color information from each view
can be fused in the texture map using a similar approach
as in [24]. Using the reconstructed surface, each view vi is
warped into a common texture space Iwarp

i . For each pixel
in the texture map Ip, the color is computed by weighting
the contribution of each warped pixels. For each vertex vk, a
weight wi(vk) proportional to its visibility from the view vi is
defined:

wi(vk) = e−ωn(1−nkncam
i ) (6)

where nk is the normal for vk and ncam
i represents the z

direction of the ith camera. The weight wi(vk) is propagated
to pixel by interpolating them with radial basis function, using
the following equation:

wi,p = ∑
k

eωu||up−ui,k||2wi(vk) (7)
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Fig. 1. Sample outputs of face frontalization process, from left to right, for
0, 15, 30, 45, 60 degrees, respectively. First two rows show different views
generated for a given subject, whereas the last row shows the frontalized
face images. Up to medium angles (i.e. 45), the presented method is able to
generate a frontal face image successfully. However with larger pose angles,
discontinuities start to show in the middle of the face, due to self occlusion
and erroneous landmarks localization. For the FER experiments, we only used
the pose angles up to 45 degrees.

where up is the coordinate of the pixel p, ui,k is the position
of vk in texture space and ωu controls the support region of vk.
Each pixel’s weight is then normalized such that ∑i wi,p = 1.
The final pixel value in the texture map is given by:

Ip = ∑
i

wi,pIwarp
i,p (8)

In our experiments, ωn and ωu have been empirically set to
50 and 1e−3, respectively. In Fig. 1, the first two rows show
different views generated for a given subject. Starting with
no pose, it is gradually increased by steps of 15 degrees up
to 60 degrees to the right and left, respectively. Due to self
occlusions, we limit the pose angles up to 60 degrees and for
the FER experiments, use the pose angles up to 45 degrees.
The last row shows the pose normalized face images. Up
to medium angles, i.e. 45 degrees, the solution presented in
this section is able to generate a frontal image successfully.
However with larger pose, discontinuities start to show in the
middle of the face, due to self occlusion and wrong landmark
localization.

B. Facial Expression Recognition

We have performed facial expression recognition both with
hand-crafted features, LBP, combined with support vector
machine classifiers, and convolutional neural networks. In this
subsection, we give an overview of these approaches. Param-
eters are provided in III. B. Experimental Setup subsection.

1) Local Binary Patterns: We have used spatially enhanced
LBP histogram [25] for face representation. In this approach,
images are divided into regions and uniform LBP histogram
is calculated for each region. The overall feature vector is
obtained by concatenating histograms from each region.

2) Convolutional Neural Networks: In the CNN-based ap-
proach, we have employed the VGG-Face architecture [26].
VGG-Face model has 13 convolutional layers followed by
three fully connected layers.

Fig. 2. Sample images from the FER 2013 database [27].

III. EXPERIMENTAL RESULTS

In this section, we first present the databases used in
this work and the experimental setup. Then, we convey the
experimental results and discuss them in detail.

A. Databases

1) BU3DFE Database: The Binghamton University 3D
Facial Expression Database (BU3DFE) [18] is used in this
study. This database contains 3D models from 100 subjects,
56 females and 44 males. 83 landmark points are provided
for each model. The subjects show a neutral face as well as
six basic facial expressions —anger, disgust, fear, happiness,
sadness, surprise— at four different intensity levels.

2) FER2013 Database: The Facial Expression Recognition
2013 [27] database was released for the ICML 2013 Challenge
on Representation Learning. It was collected by using Google
image search, and contains a large amount of appearance
variations, mainly due to illumination and pose. It contains
35,887 images with six basic emotions: anger, disgust, fear,
happiness, sadness, surprise, and neutral. Samples from this
database can be seen in Fig. 2.

B. Experimental Setup

We designed a cross-pose, subject-independent experimental
setup where the 100 subjects are divided into five folds
according to subject IDs. Using these subject-independent
subsets, we performed 5-fold cross validation. Training data
includes images of 80 subjects, while test data includes images
of 20 subjects. Training data has only zero degree (frontal) face
images, whereas test data contains face images with different
pose angles varying from -45 to 45 degrees in 15 degrees
steps. Different intensity levels of expressions are trained and
tested, separately.

We have chosen LBPu2
(8,2) operator for LBP-based feature

extraction process. Each image is divided into 7× 7 = 49
regions. In uniform LBP, each region is represented by 59
dimensional features. For the whole image this results in 59×
49 = 2891 dimensional feature vector. After feature extraction
step, principal component analysis (PCA) is applied, and 99%
of the variance is retained. This way, feature dimensionality is
reduced to 400. Finally SVMs with radial basis function (RBF)
kernel are trained in one-vs-all manner. LIBSVM library is
used for implementation [28].

For CNN-based approach, we have used the pre-trained
VGG-Face model [26] and fine-tuned it on the FER 2013
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TABLE I
RECOGNITION ACCURACIES ON NORMALIZED IMAGES AT DIFFERENT

INTENSITIES BY USING LBP.

Intensity 15 30 45 Avg.
1 57.43 53.92 48.81 53.39
2 67.33 65.50 54.68 62.50
3 71.50 65.76 53.09 63.45
4 76.33 73.16 59.41 69.63

Avg. 68.15 64.59 54.00 62.24

TABLE II
RECOGNITION ACCURACIES ON NON-NORMALIZED IMAGES AT DIFFERENT

INTENSITIES BY USING LBP.

Intensity 45l 30l 15l 15r 30r 45r Avg.
1 27.83 34.67 45.17 49.00 40.50 28.67 37.64
2 23.83 41.17 57.00 59.33 48.67 35.83 44.31
3 33.50 52.16 63.83 65.50 49.50 29.83 49.05
4 32.83 57.83 68.00 63.50 44.83 30.50 49.58

Avg. 29.50 46.46 58.50 59.33 45.88 31.21 45.15

database [27] in order to adapt it for facial expression recogni-
tion. We have further adapted it by fine-tuning it once more on
the frontal training images from the BU3DFE database [18].
This procedure has been repeated for each fold and five
different models have been obtained, i.e. one for each fold.

C. Results

The experimental results are given in Tables I-IV. Table I
and Table II presents the results when using LBP+SVM based
approach on the pose normalized and non-normalized face
images, respectively. Similarly, Table III and Table IV convey
results achieved with the CNN-based approach. In all the
tables, the correct classification accuracies achieved at each
intensity level are also given separately. It can be observed
from Table I and Table II that pose normalization contributes
significantly to the performance of the LBP+SVM based
approach. The average accuracy has increased from 45.15%
to 62.24%. This indicates that LBP features are very sensitive
to pose variations and can benefit from pose normalization. As
expected, as the pose angle increases, the performance drops
in the cross-pose FER experiments. The highest improvement
in the recognition accuracy is observed for 45 degree images,
because it is more challenging to perform facial expression
recognition when the pose angle difference between the train-
ing and testing images is high. However, increase in view angle
also poses a challenge for the pose normalization method,
since face frontalization quality deteriorates with increasing
pose angle due to self occlusions. It can be seen that when the
expression intensity increases the correct classification rates
also increases. This is expected, since facial expressions are
more apparent at higher intensities.

CNN-based facial expression recognition approach is found
to be superior compared to the LBP+SVM based approach as
shown in Tables III and IV. The average correct classification

TABLE III
RECOGNITION ACCURACIES ON NORMALIZED IMAGES AT DIFFERENT

INTENSITIES BY USING CNN.

Intensity 15 30 45 Avg.
1 62.83 59.33 55.67 59.28
2 69.33 64.17 59.50 64.33
3 75.17 73.17 67.67 72.00
4 80.17 76.17 68.00 74.78

Avg. 71.87 68.21 62.71 67.60

TABLE IV
RECOGNITION ACCURACIES ON NON-NORMALIZED IMAGES AT DIFFERENT

INTENSITIES BY USING CNN.

Intensity 45l 30l 15l 15r 30r 45r Avg.
1 48.17 58.00 61.83 61.50 57.17 51.17 56.31
2 56.67 65.50 70.50 71.50 67.67 59.33 65.19
3 66.33 71.67 77.17 76.17 71.33 62.83 70.92
4 70.83 73.33 77.33 77.33 73.00 68.83 73.44

Avg. 60.50 67.13 71.71 71.62 67.29 60.54 66.47

rate is increased from 45.15% to 66.47% when CNN-based
approach is applied on the non-normalized images. It improves
the average accuracy from 62.24% to 67.60% when it is
performed on the pose normalized images. An interesting
observation is that when CNN-based approach is used, the
performance difference due to face frontalization is less.
Compared to an absolute performance difference of around
17% in the case when LBP+SVM based approach is used,
it is only 1.2% when CNN-based approach is applied. This
outcome can be explained with the fact that, during the fine-
tuning process of the VGG-Face model on the FER 2013
database, the CNN captures also the pose variations while
learning to classify different expressions, since, as illustrated
in Fig. 2, the FER 2013 database contains face images with
varying pose angles. This indicates that CNN-based approach
is robust to pose variations. However, pose normalization still
contributes to the performance. A similar observation has been
previously made in a CNN-based face recognition approach,
where pose normalization has shown to contribute around 1-
2% increase in face recognition accuracy [29]. Fig. 3 gives an
overview of the results at different pose angles, comparing the
average accuracies obtained both on the pose normalized face
images and non-normalized 2D samples.

Fig. 3. Average recognition accuracies at different pose angles.
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IV. CONCLUSIONS
In this paper, we have investigated the effect of pose normal-

ization for cross-pose facial expression recognition. We have
presented an expression preserving face frontalization method
and employed two facial expression recognition approaches,
one based on hand-crafted LBP features combined with SVM
classifiers and the other based on a state-of-the-art deep CNN
model, VGG-Face, which is fine-tuned on the FER 2013
database. We have conducted extensive experiments on the
BU3DFE database using a cross-pose, subject-independent
setup, in which frontal face images are used for training,
whereas face images with varying pose angles, ranging from
-45 to 45 degrees in 15 degrees steps, are used for testing.

In the experiments, CNN-based FER approach is found
to be superior to the approach based on LBP+SVM com-
bination. We have shown that face frontalization improves
the performance significantly when LBP+SVM combination
is used. However, the achieved improvement when CNN-
based approach is employed is smaller. This shows that CNN-
based approach can learn to handle pose variations up to
some extent, since it is fine-tuned on a dataset that contains
face images with varying pose angles. Another interesting
observation is that the performance gain obtained in a CNN-
based FER approach due to pose normalization matches the
one that has been reported to be achieved by a CNN-based
face recognition approach. This validates that, although CNN-
based facial image analysis approaches are very powerful
and can handle pose variations, when they are trained with
samples from different view angles, one can still benefit
from pose normalization to further improve their performance.
We plan to continue to work on enhancing the quality of
expression preserving face frontalization in order to achieve
higher accuracies.
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