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Abstract—In this paper we address the design of projection
matrix for compressed sensing. In most compressed sensing
applications, random projection matrices have been used but
it has been shown that optimizing these projections can greatly
improve the sparse signal reconstruction performance. An inco-
herent projection matrix can greatly reduce the recovery error for
sparse signal reconstruction. With this motivation, we propose an
algorithm for the construction of an incoherent projection matrix
with respect to the designed equiangular tight frame (ETF) for
reducing pairwise mutual coherence. The designed frame consists
of a set of column vectors in a finite dimensional Hilbert space
with the desired norm and reduced pairwise mutual coherence.
The proposed method is based on updating ETF with inertial
force and constructing incoherent frame and projection matrix
using alternating minimization. We compare the performance of
the proposed algorithm with state-of-the-art projection matrix
design algorithms via numerical experiments and the results show
that the proposed algorithm outperforms the other algorithms.

Index Terms—Compressed sensing, projection matrix, mutual
coherence, equiangular tight frame.

I. INTRODUCTION

Compressed sensing (CS) has generated a lot of research
interest in the signal and image processing communities
since its introduction [1]–[3]. CS provides an alternative to
the Shannon-Nyquist sampling theorem via a single step
compression and sampling scheme. It has gained popularity
due to its ability to recover a high dimensional signal from
significantly fewer measurements than the number of ambient
signal measurements required in conventional schemes. Com-
pressed sensing allows us to exploit the sparse structure of
the signal or underlying phenomena for capturing incoherent
measurements using a projection (or sensing) matrix [4]. CS
provides the mathematical framework for reconstructing a
signal x ∈ <N×1 from linear measurements y ∈ <M×1

acquired through a projection matrix Φ ∈ <M×N [5]:

y = Φx (1)

where M � N . We would like to reconstruct the signal x
from the projections y, however since (1) is an underdeter-
mined system, there are infinite number of participant signals
x which satisfy (1). We need to introduce additional constraint

on x to be able to solve (1) for a unique x. The CS system
exploits the sparse structure of the underlying phenomena:

x =
L∑
i=1

θiψi = Ψθ (2)

where Ψ ∈ <N×L is the (sparsifying) transform basis and
θ is the vector of sparse coefficients. Using (1) and (2), the
measurement vector can be expressed as:

y = Φx = ΦΨθ = Dθ (3)

where D , [d1,d2, . . . ,dL] ∈ <M×L is an overcomplete
frame or dictionary with L � M . With an overcomplete
frame D, the vector θ is typically not unique for a given
measurement vector y [6]. The additional sparsity constraint
on x thus plays an important role. The signal x is said to be
sparse if most of the coefficients of θ and the sparse signal
is said to be K-sparse if the number of non-zero coefficients
is K, also known as the sparsity level of the signal. With
the sparsity assumption, the reconstruction problem can be
formulated as:

min
θ
‖θ‖0 s.t. y = Dθ = ΦΨθ (4)

which is NP-hard. Greedy algorithms, such as orthogonal
matching pursuit (OMP) [7], matching pursuit (MP) [8], gener-
alized OMP [9], and others [10] can under certain conditions
solve for θ (with theoretical guarantees) and recover x. In
CS, the early work relied on random projection matrices but
it has been shown that an appropriately designed projection
matrix offers better signal recovery from the under-sampled
measurements [4]. The spark of a matrix is defined as the
smallest number of linearly dependent columns and this yields
a guarantee for uniqueness of the sparse solution provided
‖θ‖0 ≥ spark(D)/2 [11]. In other words, a larger value
of spark results in a larger signal space for the exact sparse
recovery, which in turn implies the need to design a projection
matrix with maximized spark. However, this is a computation-
ally intensive task and hence CS systems rely on projection
matrix design with reduced pairwise mutual coherence µ(D),
which will be introduced in the next section.
In this paper, we focus on designing incoherent projection
matrix for improved recovery performance in CS systems.
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This is achieved by designing equiangular tight frame (ETF)
for the corresponding Gram matrix and updating the frame so
as to reduce the mutual coherence. The matrices are updated
iteratively through the target ETF using the weighted distance
between the previous iterations as inertial force. Numerical
experiments were performed to evaluate the recovery perfor-
mance of the proposed algorithm and the results demonstrate
that our method has a better overall performance compared to
the state-of-the-art projection matrix design algorithms.
The rest of the paper is organized as follows. In Section II,
we present some preliminaries including the metrics used for
evaluating the CS performance followed by a discussion of
related work. Section III presents the proposed incoherent
frame and projection matrix design method. Simulation results
are presented in Section IV demonstrating the performance
of the proposed algorithm. Finally, concluding remarks are
presented in Section V.

II. BACKGROUND

A. Preliminaries

The mutual coherence of a frame D, represented by µ(D),
is defined as the largest absolute and normalized inner product
between the different columns of the frame [11], [12]:

µ(D) = max
i6=j

1≤i,j≤L

|dTi dj |
‖di‖2‖dj‖2

(5)

Given a frame D, a K-sparse signal x can be recovered
from the measurements y using (4) provided the following
is satisfied [11]:

K <
1

2

(
1 +

1

µ(D)

)
(6)

Mutual coherence as a metric considers sparse representation
and recovery performance from a worst-case perspective as it
reflects the extreme pair-wise correlation in the frame which
can be misleading. However, it has the capability to capture the
behavior of uniform dictionaries and is easy to compute [11].
In the Gram matrix G = DTD = ΨTΦTΦΨ, the (i, j)th

element is represented as gij = dTi dj where we assume D to
be the normalized effective frame. In addition to the mutual
coherence defined in (5), an alternative coherence metric that
can be used to evaluate the recovery efficiency of the measure-
ment matrix is the t-averaged mutual coherence µt for a given
coherence threshold t, defined in (7). µ and µt represent the
maximum and averaged values of the off-diagonal elements
of the Gram matrix G, respectively. These two coherence
parameters will be used as performance measures for the
projection matrix design in this paper.

µt(D) =

∑
1≤i,j≤L,i6=j

(|gij | ≥ t) · |gij |∑
1≤i,j≤L,i6=j

(|gij | ≥ t)
. (7)

We employ the concept of tight frames in order to design
projection matrix while minimizing the mutual coherence.
A finite frame for the Hilbert space <M×1 is defined as a

set of atoms (or columns dk of matrix D ∈ <M×L) that
satisfies the Parseval’s condition α‖v‖22 ≤ ‖DT v‖22 ≤
β‖v‖22, ∀ v ∈ <M where α and β are the positive con-
stants. If these constants are equal i.e., α = β thenD is known
as α-tight frame, and if α = β = 1 then D is known as unit
norm tight frame (UNTF). Welch bound on mutual coherence
µW , given in (8), is a lower bound on the maximum pairwise
correlation between the frame atoms and can be achieved with
an ETF as it has the minimum mutual coherence. The UNTF
with the minimum mutual coherence among all frames having
the same dimension is called a Grassmannian frame [13].

µ(D) ≥ µW ,

√
(L−M)

M(L− 1)
(8)

B. Related Work

Next we discuss in brief some of the key frameworks in
the literature for the design and optimization of the projection
matrix. The first work on optimization of the projection matrix
was the shrinkage scheme proposed by Elad [4]. CS recovery
based on mutual coherence (5) does not reflect the average
signal reconstruction performance. Elad proposed optimizing
the projection matrix based on the t-averaged mutual co-
herence (7). However, the method in [4] is computationally
intensive and the shrinkage function introduces some large
values as off-diagonal elements of the Gram matrix that were
not present earlier. Due to these large magnitude off-diagonal
elements in the Gram matrix the worst case guarantees of
the recovery algorithms no longer hold. A different shrinkage
function was introduced in [14] for projecting the Gram matrix
onto a convex non-empty set by reducing the off-diagonal
elements towards the Welch bound on mutual coherence.
Authors in [15] propose a method for constructing D by
making any subset of its columns as orthogonal as possible,
or equivalently minimizing the difference between G and the
identity matrix (the simplest ETF). The sensing matrix Φ for a
fixed Ψ is computed by reducing the largest M components of
the error matrix. This method is non-iterative with significant
computational improvements compared to Elad’s method but
with only a slight reduction in the reconstruction error. Zelnik-
Manor et al. introduced optimized measurement matrix design
based on block-sparse representations and its application to
block-sparse decoding. They obtained a weighted surrogate
function given in (9).

‖DTD − I‖2F

=
B∑
j=1

∑
i6=j

‖D[i]TD[j]‖2F +
B∑
j=1

‖D[j]TD[j]− I‖2F
(9)

where D is represented as a concatenation of B column-
blocks D[j]. The first term in the right hand side (RHS) of
(9) is the total interblock coherence and the second term is
diagonal penalty [16]. In [17], randomly initialized sensing
matrix is optimized using gradient descent based alternating
minimization resulting in a matrix with reduced coherence
than the initial one.
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III. PROBLEM FORMULATION

An incoherent frame D is designed w.r.t. the updated ETF
in each iteration for the given or learned sparsifying basis Ψ,
which is similar to minimizing the off-diagonal elements of
Gram matrix G. Hence, the cost function for projection matrix
design (10) aims to reduce the mutual coherence by designing
an ETF and then updating the D and Φ at each iteration based
on the designed ETF.

‖DTD − I‖2F = ‖ΨTΦTΦΨ− I‖2F (10)

In this paper, Gram matrix G = DTD is not optimized
directly with respect to the identity matrix but with a designed
ETF at each iteration. Here, updated G will be close to the
corresponding ETF designed by the algorithm and contained
in the convex set Hµ:

Hµ , {H ∈ <L×L : H = HT , Hii = 1,max
i6=j
|Hij | ≤ µW }

For designing an incoherent frame D, cost function in (10) is
reformulated and posed as the following minimization:

min
D
‖E‖2F + PΠ(D) s.t. E = DTD −H (11)

where H ∈ Hµ, and PΠ(D) defines the projection of D onto
a convex set Π which regulates its column norm, given by:

PΠ(D) : {di}Li=1 =

{
di ‖di‖2 < 1
di

‖di‖2 otherwise.

For updating the ETF H , we reduce the larger off-diagonal
elements by projecting G onto Hµ at each iteration and then
updating D. We use µW as the threshold for updating H .
Let Ep = DT

kDk − I at the pth outer iteration, then after
projecting E onto Hµ we obtain the ETF. This is achieved
by constraining the off-diagonal elements of E using the
shrinkage function SΩµ .

SΩµ
(E) : Eij

(i6=j)
=

{
Eij |Eij| ≤ µW
sign(Eij) · µW otherwise

(12)

At each iteration this ensures that the large off-diagonal ele-
ments will be reduced in magnitude. Unlike other algorithms
which project E onto the set of ETF via a shrinkage function,
here we apply shrinkage on the weighted difference of the off-
diagonal elements which is an estimate of the distance between
the updated E and the corresponding ETF. The update scheme
can be accelerated by incorporating an inertial force. The
inertial force is computed as the weighted difference of the
estimates of E from iterations p and (p− 1).

Ep = DT
kDk − I

Hp = Ep + w1(Ep −Ep−1) (13)

where w1 ≥ 0 is a weighting parameter. At each iteration,
Ep is computed using the current distance between the Gram
matrix and ETF along with the inertial force.

Hp+1 = SΩµ
(Hp) + I (14)

A. Incoherent Frame Design

For updating D and Φ, we apply the alternating minimiza-
tion method to the updated H . In [18], authors have shown
different methods for designing incoherent projection matrix
corresponding to an ETF using alternating minimization. At
each iteration, D is updated corresponding to the ETF H
via the gradient method with inertial force. Let us denote the
objective function for D by J = min

D
‖D′D−H‖2F and the

derivative of J with respect to D as ∇D(J):

∇D(J) = 4D
(
DTD −H

)
Dk+1 = Dk − ηD

(
DTD −Hp+1

)
(15)

Similar to (13), the update step for D in (15) can be modified
to use an inertial force by taking a weighted difference of the
estimates of D from iterations k and (k − 1):

Dk+1/2 = Dk − ηD
(
DTD −Hp+1

)
Dk+1 = PΠ

(
Dk+1/2

)
+ w2 (Dk −Dk−1) (16)

where η is the step-size and w2 ≥ 0 is a weighting parameter.
Using the updated D, we update Φ by solving:

Φk+1 = min
Φ
‖Dk+1 −ΦΨ‖2F (17)

In each iteration, the algorithm alternately updates Hp+1

using (14) followed by updating Dk+1, Φk+1 using (15)
and (17), respectively. The alternating minimization is repeated
for few iterations until convergence is achieved. The projection
matrix design algorithm is summarized in Algorithm 1 below.
In the proposed incoherent projection matrix design (IPMD)

Algorithm 1: Incoherent projection matrix design (IPMD)
using alternating optimization

1 Objective: Design incoherent projection matrix.
2 Input: Sparsifying basis Ψ, weighting parameters w1,

w2, step size η, number of iterations Ntotal, Nouter,
and Ninner.

3 Initialization: Initialize Φ to a random matrix.
4 while i < Ntotal do
5 for p = 1 : Nouter do
6 Update ETF Hp+1 using (14)
7 for k = 1 : Ninner do
8 Update Dk+1 using (15)
9 Update Φk+1 using (17)

10 end
11 Φk+1 = ΦNinner

12 end
13 i = i+ 1
14 end
15 Output: Projection matrix Φoutput

algorithm, shrinkage function SΩµ
is applied only on the off-

diagonal elements and updated with an inertial force. Diagonal
elements of H remain unity during the update step (14) due
to which a normalization step is not required. Step size η and
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weighting parameters w1, w2 were determined empirically.
With w1 = w2 = 0.80 incoherent frames were obtained and a
step-size η = 0.09 is used to avoid divergence. For updating Φ,
Ninner = 3 gives good results. We set the number of iterations
Ntotal = 100 for stopping the update process. However, other
stopping criteria can also be used. For example, the algorithm
may iterate until the change in cost function value is less than
a certain threshold or until D achieves a predefined coherence
threshold.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
IPMD algorithm and compare it with some of the key projec-
tion matrix design methods from literature including random
Gaussian matrix, Elad [4], method in [16] referred to as
”Zelnik-Manor-Rosenblum-Eldar” (ZMRE), gradient descent
based algorithm in [17] referred to as ”Abolghasemi-Ferdowsi-
Sanei” (AFS), and [15] referred to as ”Duarte-Carvajalino-
Sapiro” (DCS). We compare these methods via extensive set of
numerical experiments for 100 iterations each and for IPMD,
Nouter = 15. The algorithm parameters are kept fixed across
the entire set of experiments. The initialized random matrix
is generated for N = 80, L = 100, M = 25 with sparsity
level K = 15. For Elad’s algorithm, the other parameters are:
t = 0.4 and γ = 0.95. In Fig. 1, histogram of the absolute
correlation between atoms of the frame is presented. It illus-
trates the distribution of the absolute off-diagonal values of the
normalized Gram matrix for each algorithm. It is noted that
the histogram for the IPMD algorithm displays a shift towards
the left (or origin), which indicates reduction in the pairwise
correlation. Next we consider the averaged mutual coherence
µt and cumulative coherence as a performance metrics since
these are better measure of average recovery performance than
the mutual coherence µ. Cumulative coherence measures the
maximum total mutual coherence between a fixed set of atoms
and a collection of other atoms in the dictionary for better
insight. The evolution of these two performance parameters is
shown in Fig. 2. It is seen that the proposed IPMD algorithm
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Fig. 1: Histogram of the absolute off-diagonal values of the optimized
Gram matrix (N = 80, L = 100, and M = 25).
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(a) Evolution of t-averaged mutual coherence (µt)
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(b) Evolution of cumulative coherence

Fig. 2: Evolution of coherence parameters for N = 80, L = 100,
M = 25, and t = µW = 0.4.

results in significant smaller values for µt and cumulative
coherence.
As seen from the Table I, CSIPMD has lowest averaged
mutual coherence but ||I −G||F is comparable to CSZMRE .
However, IPMD yields an improved performance in terms of
the signal reconstruction accuracy. For evaluating the recovery
performance we performed two set of experiments. Using a
learned or given transform basis Ψ we generate a set of
Ns = 1500 signals with θj (j = 1, . . . , Ns) which are
K-sparse. Measurement vectors yj are computed for these
signals using Φ designed by the above mentioned algorithms
with a fixed sparsifying basis Ψ. OMP algorithm is used for
recovering the sparse vectors from the measurements using (4).
The average reconstruction error is computed as:

er =
1

Ns

Ns∑
j=1

‖xj − x̂j‖22
‖xj‖22

(18)

where x̂j is the recovered sparse signal. We first study the
reconstruction performance with the number of iterations.
Fig. 3 shows that as the signal becomes less sparse (higher
K), the reconstruction error increases gradually. Next we study
the reconstruction performance as a function of the number of
measurements. In Fig. 4, we see that the recovery performance
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Fig. 3: Recovery performance error er along varying sparsity for
N = 80, L = 100,M = 25 with optimized projection matrix

improves as the number of measurements (M ) increases. Fig. 3
and Fig. 4 illustrate the improvement in recovery performance
when using an optimized projection matrix Φ using the IPMD.
In addition, the performance of the proposed IPMD algorithm
is consistently better compared to the other methods when
using OMP algorithm for reconstruction. Algorithms such as
OMP used for sparse reconstruction rely on the orthogonality
of the columns of D and the IPMD algorithm achieves this
to a greater extent than the other methods.
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Fig. 4: Recovery performance error er along varying number of
measurements for N = 80, L = 100,K = 15 with optimized
projection matrix

TABLE I: Performance evaluation of various CS systems (M = 25,
N = 80, L = 100 AND SNR = 20 dB)

||I −G||2F × 105 µavg

CSrandn 4.465 0.3038
CSElad 0.00473 0.2875
CSDCS 0.00492 0.2961
CSZMRE 0.00301 0.2647
CSAFS 0.00341 0.2339
CSIPMD 0.00307 0.2126

V. CONCLUSION

We presented the framework for the design of an inco-
herent projection matrix for CS applications. The proposed
IPMD algorithm was shown to design an optimized projection
matrix whose columns have reduced mutual coherence in
order to achieve improved recovery performance. We design
an ETF using inertial force update and the corresponding
frame and projection matrix are updated using the alternating
minimization method. The designed projection matrix was also
shown to have reduced cumulative coherence. The proposed
method achieves improved recovery performance (or achieves
the same recovery performance with fewer measurements) as
some of the state-of-the-art algorithms in the literature. The
experiments illustrated that proposed method outperforms the
other methods in recovery performance.
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