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Abstract—Pairwise reversible data hiding (RDH) restricts the
embedding to 3 combinations of bits per pixel pair (”00”, ”01”,
”10”), by eliminating the embedding of ”1” into both pixels.
The gain in quality is significant and the loss in embedding bit-
rate is compensated by embedding into previously shifted pairs.
This restriction requires a special coding procedure to format
the encrypted hidden data. This paper proposes a new set of
embedding equations for pairwise RDH. The proposed approach
inserts either one or two data bits into each pair based on its type,
bypassing the need for special coding. The proposed equations
can be easily integrated in most pairwise reversible data hiding
frameworks. They also provide more room for data embedding
than their classic counterparts at the low embedding distortion
required for high-fidelity RDH.

I. INTRODUCTION

Reversible data hiding (RDH) allows for both the extraction
of the hidden data and the exact recovery of the host signal.
Image RDH exploits the correlation between neighboring
pixels in order to efficiently insert the hidden data into the
host image. High-fidelity RDH has a severe limitation on
the distortion caused by the embedding algorithm, usually
requiring for the host pixel to be modified at most by one
graylevel value.

Most RDH algorithms embed data into individual pixel
using the prediction error histogram shifting framework (PE-
HS) of [1] or the prediction error expansion framework (PEE)
of [2]. Even though they were developed separately, PEE can
be viewed as a generalized form of PE-HS. PEE was also
further refined in [3] with the introduction of local complexity
based capacity control and non-causal prediction.

Recently, two different approaches were developed for high-
fidelity RDH, namely block based pixel-value-ordering (intro-
duced in [4]) and pairwise embedding (introduced in [5]). The
latter outperforms both PE-HS/PEE and pixel-value-ordering.

Pairwise RDH schemes process the image pixels as pairs.
Based on their corresponding prediction errors, the host pairs
will either contain an average of log23 bits or one bit. Pairs
that cannot be used as hosts have their values shifted by one
graylevel in order to maintain reversibility. [5] formed the pairs
by grouping two diagonally connected pixels and used their
horizontal and vertical neighbors as the prediction context. [6]
modified the pairwise embedding process in order to allow the
pairing of horizontally connected pixels. A pixel triplet RDH
framework derived from [5] was introduced in [7]. Pairwise

embedding was also adapted for the block based pixel-value-
ordering framework in [8] by processing the four host pixels
from each block as two sets of pairs. The basic pairwise
framework was significantly improved with the introduction
of adaptive pairing in [9]. The prediction error is used to
distribute the image pixels into groups. Only the pixels that
are best suited for pairwise embedding are paired with each-
other. The pixels that do not fulfill the pairing requirements
are individually shifted. The pairing algorithm of [9] produces
better quality pairs, which in turn significantly improve the
efficiency of pairwise RDH. [10] uses geodesic paths as a
pairing criteria for a block based form of adaptive pairing.
A modified version of [9] that allows for the horizontally
connected pixels to be adaptively paired was also proposed
in [11].

In order to embed an average of log23 bits in certain pairs
and one bit in others, all pairwise RDH schemes require a
three symbol based coding of part of the encrypted hidden
data. This is a cumbersome procedure that depends both on the
embedding parameters and on the prediction error distribution
of the pairs. This paper introduces a new set of embedding
equations for pairwise RDH. Thus, the pairs that contained
log23 bits are now embedded with either one or two bits. This
approach completely removes the need for the extra coding,
without compromising the efficiency of pairwise RDH. On the
contrary, the proposed equations provide higher embedding
capacities at lower distortion.

The outline of the paper is as follows. The pairwise RDH
framework introduced in [11] is briefly described in Section
II. The proposed embedding equations are presented and
discussed in Section III. The experimental results are presented
in Sections IV. The conclusions are then drawn in Section V.

II. RELATED WORK

The proposed embedding equations can be easily integrated
in most pairwise RDH frameworks (including those proposed
in [5], [6], [9], [10] and [11]). We shall further describe
in this section one of these frameworks, namely the one
recently introduced in [11]. There is also a framework that
is not compatible with the proposed embedding equations,
namely the pairwise pixel-value-ordering introduced in [8].
The proposed approach requires flexibility when it comes to
shifting directions. The shifting directions used in [8] cannot
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(a) (b)

Fig. 1. The cross and dot sets (a), the c1–c6 prediction context and the
p1–p12 pairing partners for x (b) using the pairing scheme of [11].

be altered. Also note that in terms of performance, [8] is
outperformed by [9], [10] and [11].

The pairwise reversible data hiding framework introduced
in [11] is derived from the adaptive pairing scheme of [9]. The
embedding algorithm first splits the image rows into two dis-
joint sets, cross and dot, as shown in Fig. 1.a. The first and last
lines and columns of the image are not directly used for data
hiding. Also note that the other pairwise embedding schemes,
except [6] and [8], use the chessboard pattern introduced in
RDH by [3].

The cross set is processed first. For each pixel in the set,
a local complexity value is computed based on the c1–c6
prediction context (see Fig. 1.b):

lc = (c1 − c2)
2 + (c2 − c3)

2 + (c3 − c6)
2 + (c1 − c4)

2

+(c4 − c5)
2 + (c5 − c6)

2

(1)
The pixels in the current set are then sorted in ascending

order based on their lc value. Only the first N sorted pixels
are further used for data hiding (the remaining pixels are not
altered). Each of the N pixels is predicted as:

x̂ =

⌊
c1 + 2c2 + c3 + c4 + 2c5 + c6

8
+

1

2

⌋
(2)

where bac is the greatest integer less than or equal to a.
The prediction error is then computed:

ex = x− x̂ (3)

The pixels are distributed into three distinct groups:

x ∈

 A, if l < ex < r
B, if ex < l − 1 or ex > r + 1
C, if ex ∈ {l − 1, l, r, r + 1}

(4)

where r and l are the two primary prediction error histogram
bins selected for data hiding. In the 2D histogram, r and l
generate four bins. In order to simplify the presentation, we
shall further consider r = 0 and l = −1. Thus, (4) becomes:

x ∈
{

B, if ex < −2 or ex > 1
C, if ex ∈ {−2,−1, 0, 1}

(5)

Note that ex has integer values. There are no integer values
between −1 and 0, therefore group A is void. Anyway, the
pixels belonging to A are not used by the embedding scheme
and remain unaltered).

The pixels belonging to B have their graylevel shifted
by one position (to prevent them from overlapping with the
marked values from C):

x′ =

{
x+ 1 if ex > 1
x− 1 if ex < −2 (6)

The pixels in C are then paired with each-other. The pairing
process has two stages. In the first stage, the p1–p12 pixels
(shown in Fig. 1.b) are considered one-by-one as possible
pairing partners for x. These pixels must belong to the same
set as x and are positioned around x in order to exploit the
correlation between neighboring pixels. If p1 ∈ C, then the
(x, p1) pair is formed and both pixels are removed from C.
They can no longer be selected as pairing partners for other
pixels. If p1 /∈ C, then p2 can be evaluated by checking
if p2 ∈ C. The procedure is repeated for the remaining
pairing candidates, until a pairing partner is found or all twelve
candidates are checked. The second pairing stage is performed
on the remaining pixels in C after the first stage concluded.
In this stage, x is paired with the next pixel belonging to C
in the local complexity sorting order.

Each (x, p) pixel pair is then embedded with hidden data:

(x′, p′) =


(x, p) + (sxb1, spb2), if ex ∈ {−1, 0} and ep ∈ {−1, 0}
(x, p) + (sxb, spb), if ex ∈ {−2, 1} and ep ∈ {−2, 1}
(x, p) + (sxb, sp), if ex ∈ {−1, 0} and ep ∈ {−2, 1}
(x, p) + (sx, spb), if ex ∈ {−2, 1} and ep ∈ {−1, 0}

(7)

where si =

{
1, if ei ≥ 0

−1, if ei ≤ −1
is the shifting direction.

The bi ∈ {0, 1} encrypted hidden data bits are either di-
rectly embedded or are first coded using a three symbol
based alphabet. These symbols are embedded as (b1, b2) ∈
{(0, 0), (0, 1), (1, 0)}. In other words, a pixel pair will either
contain one bit of hidden data (when the bit is directly em-
bedded) or an average of log23 bits (when using codded bits).
This codding is a cumbersome aspect of pairwise embedding
that is found in all pairwise data hiding frameworks. Before
the embedding process can start, the data hider must determine
the appropriate distribution of coded/not-coded bits using the
current pixel set 2D prediction error histogram. Note that one
can use a simple (suboptimal) coding approach for (b1, b2):
embed two bits when b1 = 0, otherwise (b1, b2) = (1, 0) and
a single bit, b1, is embedded. This suboptimal coding decreases
the capacity for such pairs from log23 ≈ 1.57 bits to 1.5 bits.

The 2D prediction error histogram mapping of equation (7)
is shown in Fig. 2.b together with the ones of classic PE-
HS/PEE and of the proposed pairwise embedding (discussed
in the next section).

The entire embedding process is then repeated for the dot
set: the pixels are sorted based on (1) using a prediction
context with modified values from the cross set; the first N
sorted pixels are selected; the prediction error is determined
for each selected pixel with (2) based on (3); the N pixels
are first grouped with (5) and then shifted with (6) or marked
with (7). The locations of the last embedded pixels/pairs for
each set are recorded and stored together with r, l, N and
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(a) Classic PE-HS/PEE (b) Pairwise embedding (c) Proposed embedding

Fig. 2. The effect of the embedding equations on the (ex, ep) prediction error pairs.

an overflow map by LSB substitution in a reserved area. The
original reserved area LSBs are appended to the hidden data
before the embedding stage.

The decoding stage starts by reading the auxiliary data from
the reserved area LSBs. The dot set is processed first. The
decoding process is similar to the embedding one: the pixels
in the current set are sorted based on their corresponding local
complexity value, the prediction errors are determined and the
pixels are grouped using the following grouping selection:

x′ ∈
{

B, if ex < −3 or ex > 2
C, if ex ∈ {−3,−2,−1, 0, 1, 2}

(8)

Note that (8) produces exactly the same groups as (5). The
bounds of the groups in (8) are updated to compensate for the
distortion introduced by the embedding algorithm.

The pixels in B are restored by reversing equation (6). The
pixels in C are paired using the previously described two
staged pairing process (the pixels are processed in the same
order). Their values are restored by reverting (7) (the reverse
mapping operation from Fig. 2.b). The same decoding process
is then repeated for the cross set. The original reserved area
LSBs are also restored.

III. PROPOSED EMBEDDING SCHEME

The goal of the proposed embedding scheme is to
remove the coding associated with pairwise embedding
without compromising its performance. The proposed
scheme only alters the embedding equations for the four
main embedding pairs, namely those with (ex, ep) ∈
{(0, 0), (−1, 0), (0,−1), (−1,−1)} (corresponding to the first
embedding case in equation (7)). The proposed embedding
equations for these pairs are as follows:
• If (ex, ep) ∈ {(0, 0), (−1, 0)}, then two hidden bits are

inserted into the (x, p) pixel pair:

(x′, p′) =


(x, p), if (b1, b2) = (0, 0)
(x, p) + (0, sp), if (b1, b2) = (0, 1)
(x, p) + (sx, 0), if (b1, b2) = (1, 0)
(x, p) + (0,−sp), if (b1, b2) = (1, 1)

(9)

where si =

{
1, if ei ≥ 0

−1, if ei ≤ −1
is the previously dis-

cussed shifting direction.
• If (ex, ep) ∈ {(0,−1), (−1,−1)}, then one hidden bit is

inserted into (x, p):

(x′, p′) =

{
(x, p) + (0, sp), if b = 0
(x, p) + (sx, 0), if b = 1

(10)

The remaining pairs are processed using standard pairwise
embedding:

(x′, p′) =

{
(x, p) + (sxb, spb), if ex ∈ {−2, 1} and ep ∈ {−2, 1}
(x, p) + (sxb, sp), if ex ∈ {−1, 0} and ep ∈ {−2, 1}
(x, p) + (sx, spb), if ex ∈ {−2, 1} and ep ∈ {−1, 0}

(11)
The effect of the proposed embedding equations on the pre-
diction error is shown in Fig. 2.c.

Note that the proposed scheme is conceptually similar to
the suboptimal coding described in the previous section. For
both approaches the main embedding pairs contain either
one, or two bits of data. The key difference is in the way
the pairs are selected. The suboptimal coding selects them
based on the encrypted hidden data, i.e., essentially at random.
The proposed scheme embeds two bits in the pairs with
(ex, ep) ∈ {(0, 0), (−1, 0)}. But ex = 0 is the most common
prediction error, therefore (0, 0) is the most common error
pair. In other words, the (0, 0) bin of the 2D prediction error
histogram has the largest number of pairs. (−1, 0) and (−1, 0)
represent the second and third most populated histogram bins
(with interchangeable positions based on the host image).
(−1,−1) is usually the fourth most populated bin. Therefore,
the proposed embedding scheme inserts two bits into each
pixel pair of the two most populated histogram bins at the
cost of embedding one bit in pairs belonging to the third and
fourth most populated bins. This aspect allows the proposed
approach to outperform both the standard three symbol coding
and the suboptimal coding.

One can notice from Fig. 2.b that for standard pairwise
embedding, the four embedding quadrants can move indepen-
dently of each-other, therefore one can control the provided
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Fig. 3. The test images: Lena, Mandrill, Jetplane, Barbara, Elaine, Lake,
Boat and Peppers.

capacity by changing the primary embedding bins (r and l).
Note that the capacity is still primarily controlled with N . In
Fig. 2.c, the quadrants are vertically connected. Therefore, the
connected quadrants cannot move independently from each-
other. Nevertheless, in terms of performance, this limited bin
selection provides a similar level of capacity control as the
one offered by classic pairwise embedding.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed pairwise
embedding equations is evaluated. Eight classic 512 × 512
graylevel test images intensely used in image processing
form the test set. These images are shown in Fig. 3,
seven of them (all images except Barbara) are available at
http://sipi.usc.edu/database/. The peak signal-
to-noise ratio between the original image and its watermarked
version is used to evaluate the distortion introduced by the
embedding algorithm (a distortion that is completely removed
by the decoding algorithm).

The proposed pairwise embedding equations are compared
with their classic counterparts and the results are presented
in Fig. 4. A gain in embedding capacity over the classic
equations is observed on all test images. This capacity is under
the constraint of high-fidelity reversible data hiding: the pixel
values are distorted at most by one graylevel value. The pro-
posed equation with the pairwise framework of [11] provides
the highest embedding capacities reported in literature under
this constraint. A considerable gain in PSNR over the classic
approach is obtained on Mandrill, but this gain is mainly due
to the shape of the 2D prediction error histogram on Mandrill,
which favors the proposed equations. Good results are also
obtained on Elaine and Lake. For the remaining images, a

noticeable gain in PSNR is observed at the higher end of the
capacity domain. Similar results were obtained when using the
frameworks of [5] and [9].

V. CONCLUSION

A new set of embedding equations was introduced for
pairwise reversible data hiding. These equations can be easily
integrated in most pairwise reversible data hiding frameworks.
The host pixel pairs contain either one or two hidden data bits,
based on their corresponding prediction errors. The pixel pairs
do not require a separate coding stage for the hidden data.
Furthermore, the proposed equations also provide more em-
bedding room under the constraint of high-fidelity reversible
data hiding. The experimental results show the effectiveness
of the proposed approach.
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Fig. 4. PSNR/capacity results for the standard and proposed embedding equations, both using the pairwise framework introduced in [11].
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