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Abstract—Road quality assessment is a key task in a city’s
duties as it allows a city to operate more efficiently. This
assessment means a city’s budget can be allocated appropriately
to make sure the city makes the most of its usually limited
budget. However, this assessment still relies largely on manual
annotation to generate the Overall Condition Index (OCI) of a
pavement stretch. Manual surveying can be inaccurate, while
on the other side of the spectrum a large portion of automatic
surveying techniques rely on expensive equipment (such as laser
line scanners). To solve this problem, we propose an automated
infrastructure assessment method that relies on street view
images for its input and uses a spectrum of computer vision and
pattern recognition methods to generate its assessments. We first
segment the pavement surface in the natural image. After this,
we operate under the assumption that only the road pavement
remains, and utilize a sliding window approach using Fisher
Vector encoding to detect the defects in that pavement; with
labelled data, we would also be able to classify the defect type
(longitudinal crack, transverse crack, alligator crack, pothole ...
etc.) at this stage. A weighed contour map within these distressed
regions can be used to identify exact crack and defect locations.
Combining this information allows us to determine severities and
locations of individual defects in the image. We use a manually
annotated dataset of Google Street View images in Hamilton,
Ontario, Canada. We show promising results, achieving a 93%
F1-measure on crack region detection from perspective images.

Index Terms—Road Quality; Computer Vision; Machine
Learning; Pattern Recognition

I. INTRODUCTION

Road infrastructure is often a main concern for any city,
province, or country and maintaining it is critical. The Amer-
ican Society of Civil Engineers (ASCE) calculated that $91
billion a year is invested in road infrastructure in the United
States alone [1]. However, it’s estimated that despite the large
sums of money invested on road maintenance, road quality
is actually predicted to decline in major countries such as
Canada [2] and the United States [1]. Cities often have asset
management plans in place that allow them to monitor the
condition of their roads and maintain them. In the case of
Canadian municipalities, 71% perform data collection on their
roads at least once every five years [2]. This allows cities to
allocate their limited funds optimally.

Road quality assessment is currently done in one of two
ways. The first is via surveyors who drive along the roads,
check their condition, and note defects either manually or
using a specialized device. The second is a semi-automated
method utilizing specialized equipment attached to a truck or

Fig. 1: Sample final result of our algorithm. The overall defect
severity is shown in the blue box, while its pixel-wise extent
and severity is color coded and overlaid.

van. Both of these methods can be costly and come with
their own drawbacks. This makes road quality assessment
an expensive and time-consuming task, especially in larger
municipalities. In addition, different countries, states, or even
cities use different standards for their assessments, which can
mean that methods that work in one instance won’t transfer
directly to another.

We can forgo the problem of gathering data by tapping
into street view(SV) databases which are updated regularly.
Google Street View, for example, contains large amounts of
data and is updated approximately every two years for large
cities. These kinds of databases are accessible to the public,
and we can automate mining of street view data to assess
municipal assets and infrastructure. When coupled with image
processing on these images, this can prove to be the first step
to a low-cost and efficient solution.

Our focus, then, is to be able to perform road quality
assessment on street view images. Road texture can be a
powerful cue for this problem, since good quality road and
damaged road can be differentiated using texture descriptors.
As such, we built upon the describable texture dataset (DTD)
methods which achieve the state-of-the-art in texture detection
[3]. In brief, our algorithm works by first detecting the visible
road in the image, see [4]. Then, we densely sample windows
from the detected road in the input image, and calculate
SIFT descriptors in those windows. These descriptors are then
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encoded using the Fisher vector formulation [5]. The encoded
features are then classified using an SVM classifier and
separated into “good quality” and “damaged” road. This is
followed by a window-by-window voting scheme to generate
a proposed region of poor quality road. This algorithm is
described fully in our previous work [4]. Specific cracks are
detected within damaged regions by utilizing an ultrametric
contour map (UCM) [6], a weighted edge map, inside dam-
aged road regions. For this work, we build upon the region
and contour proposals to generate pixel-wise annotations for
defects along with their severities, as well as to classify defect
instances and find their overall severity. We also explore the
use of deep learning to solve this problem in a scarce-data
domain. Deep learning techniques are likely to outperform
any method using hand-crafted features when data is readily
availiable, however, in our case, our data was limited. We
employed a modified U-net [7] architecture and measured its
performance on the task at hand.

Our damaged region detection algorithm achieves an F-
measure (combination of precision and accuracy) of over
93%. The algorithm is tested on a subset of Google Street
View Images which were manually collected and annotated, to
demonstrate the method’s effectiveness on a commercial SV
database. The algorithm proves to be accurate and properly
detects cracks and damaged road, as seen in Figure 1. On
the other hand, the deep learning approach was not able to
learn the feature space with the limited amount of data it
was given and resulted in and F1 score of 55%, however it
exhibited interesting behaviour by maximizing its activations
around specific defects within labelled areas.

II. ROAD QUALITY ASSESSMENT

The frequency of performing road quality assessment led
to a good deal of work aimed at automating it. The prevalent
automation methods involve attaching an apparatus to a truck
that also drives along the city [8], [9]. This apparatus can
be attached to several locations on the vehicle, for example
in tow, on the top or bottom of the vehicle. The main
sensing portion contains a combination of one or more
cameras pointed orthogonal to the road, LIDAR or LASER
scanners, GPSs, IMU’s, and accelerometers, among others.
Notable among these is the Laser Crack Measurement System
(LCMS) produced by Pavemetrics. The information from
these sensing apparati is aggregated and different vision and
signal processing methods are used to determine the pavement
quality. These methods are quite powerful and yield highly
precise results. CrackIT [9] merges multiple preprocessing
techniques and clustering algorithms (K-means, Gaussian
Mixture Models, among others) to detect cracks and their
types and also yields favourable results with a 93.5% F-
measure for their best performing algorithm. The LCMS
comes with proprietary software to aid in PCI generation,
it utilizes all aspects of the LCMS, from the texture and
LIDAR information (to detect and measure crack depth), to
the IMU information that detects rutting. The main caveat is
that the input sensory data can be expensive and tedious to
procure. The sensing apparatus has a limited scope of vision,

specifically 4 meters wide for the Pavemetrics devices. It is
usually “looking down” at the road (pointing orthogonal to
the road), so the vehicle still needs to drive up and down every
road lane in the area to be checked. This also means parts
of the road that are not surveyed by the vehicle will not be
sensed, such as portions with parked cars, or portions blocked
off, or even road shoulders. Sensing requires high resolution
cameras (almost 1 pixel per millimetre of road in the case
of the LRIS), and expensive LIDAR scanners, so there are
usually only a few sensing vehicles that can do the sensing,
which would require more time in large areas.

A few other methods utilize street view images for road
quality assessment. In their work, Varadharajan et al. use a
dashboard camera and drive around the city of Pittsburgh,
Pennsylvania to collect their own data, essentially similar to
street view data [10]. They detect the ground plane, then over-
segment it into superpixels and generate various descriptors
for these superpixels which give way to a binary classifier
used to identify cracks inside the superpixels. A different
approach filters the input image rigorously by background
subtraction followed by wavelet-based de-noising, then, lo-
cally thresholds patches from the image (by utilizing Otsu’s
method to quickly find these local thresholds) resulting in a
binary image [8]. A survey of older methods [11] highlights
the fact that these crack detection methods operate locally
and can be fooled by the low signal-to-noise ratio (SNR) in
pavement images. The work in [12] utilizes Google Street
View specifically, and its authors generate a database of over
700K images coupled with their rating(poor, fair, or good)
which was inferred from the public records of the New York
City Department of Transportation. They utilize a method
similar to [3] to classify whole images as containing poor,
fair, or good roads.

Since we’re looking to detect individual defects in street-
view images, we resorted to creating our own database by
manually annotating pixles in street view images as either
damaged road or good quality road. This prevented us from
being able to compare our results to any of the methods
presented in this review as either the datasets they tested on
are not publicly available, or their datasets do not provide
adequate fine-grained information for image segmentation
[12]. With this in mind, our work focuses on finding any
and all road defects in an input image, with the knowledge
that classifying these defects can be done per the methods
mentioned here.

III. ALGORITHM AND METHODOLOGY

Our crack detection algorithm, based on [4], is visualized
and described in Figure 2. In brief, our algorithm densely
samples windows from the detected road in the input image
then finds SIFT descriptors in those windows. These descrip-
tors are then encoded using the Fisher Vector formulation. The
encoded features are then classified using an SVM classifier
into “good quality” and “damaged” road. This is followed
by a window-by-window voting scheme utilizing Gaussian
windows to generate a segmentation that detects damaged
road regions. Note that roads are initially detected via a
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Fig. 2: A visualization of our crack detection algorithm. We first segment the image into ‘road’ and ‘background’ using
the method of [4]. We then single out the Fisher vectors of the road pixels only. The Fisher vectors are passed through an
SVM to classify the vectors as belonging to ‘good road’ or ‘distressed road’. A voting scheme using patches of Gaussians is
employed to generate a segmentation. An ultrametric contour map [6] is computed for the image, and cracks are detected by
finding locations of high UCM response within ‘distressed road’ regions. These cracks are further distinguished by isolating
them and classifying them according to severity which is also deduced from the UCM response.

similar method which means the encoding has to be done only
once, and we simply classify “road” and “background” with
a different SVM classifier than the one used for classifying
road quality.

We then utilize an ultrametric contour map (UCM), to
detect defects precisely inside damaged road regions. This
“structured forests” [6] method uses learned low level features
and a decision forest to detect and weight specific pixels
belonging to defects in an image and produces a UCM.
The UCM goes beyond a regular edge map by weighting
edges, thereby giving a likelihood that the pixel in ques-
tion corresponds to a real defect. When combined with the
segmentation found earlier we can further improve our road
quality detection by generating probability maps of where
cracks exist in the road. This can be done by detecting strong
UCM responses inside regions classified as ‘distressed road’
to focus on the cracks present in the road. The weight of the
UCM at a pixel is found to be reflective of its defect severity,
where larger defects usually illicit a high UCM weight.

Finally, we isolate disconnected cracks into separate dis-
tress instances, and based on the the severities generated
by the UCM, we calculate an overall severity rating for
this defect. This step comes with the advantage of having
adjustable weights that can accommodate for varying rating
systems across the world by simply changing the cut-off
thresholds for different severities.

To measure the performance of a deep learning approach
to this task, we utilized a modified U-Net. U-Nets, originally
described in [7], are known to train well with limited data,
which is why we settled on them as opposed to other deep
learning architectures. The U-Net [7] architecture employs
an encoder-decoder framework, doubling the feature map
depth with each max-pool and uses skip connections between
encoder feature maps and the corresponding decoder feature
maps to generate a segmentation map for every class in the
training set. U-Nets originally were used on medical images,
and required few training examples, however they are usable

with natural images as well. We opted to modify a U-Net
for our work, as we desired a network employing encoder-
decoder architecture, as well as one that can be trained rapidly
and using a relatively small dataset.

IV. RESULTS AND DISCUSSIONS

We tested our crack detection algorithm on the subset of
images from Google Street View, obtained by querying the
Google Street View API in the Hamilton region. We annotated
a total of 250 images using LibLabel [13], and used 150 of
the images for training, 50 for validation, and 50 for testing.
We manually annotated the road in the images into regions of
‘good’, ‘medium’, and ‘poor’ road. ‘Good’ road is defect free,
whereas ‘medium’ road contains small and medium cracks
and defects, and ‘poor’ road contains potholes and larger
cracks and defects. We noticed only a few samples contained
‘poor’ road, which was insufficient for training an SVM, and
decided to merge ‘medium’ and ‘poor’ road labels into one
‘distressed’ road label.

For our deep learning experiments, we employed a 4-
layer U-Net (4 layers of convolution, followed by 4 layers
of transposed convolution) with a starting filter bank size of
64. We explored several other configurations, but this was
the highest performing one. We used an ADAM optimizer
with a fixed learning rate of 0.001, and a mini-batch size of
10 training for 500 epochs on our training set. Due to GPU
memory requirements images were resized from 640x640 into
320x320 images for training. We trained two separate modes,
one for detecting roads only and one for detecting defects
only. While detecting roads is unnecessary for this problem,
we decided to measure performance on this task as a potential
input to our main algorithm.

The metrics used for evaluation are precision, recall, false-
positive rate (FPR), and F-measure. The metrics are calculated
in a pixel-wise manner using true positives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN). Posi-
tive samples are the damaged road samples, whereas negative
samples are the good road samples. The metrics are calculated
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as Precision = TP
TP+FP , Recall = TP

TP+FN , FPR = FP
FP+TN ,

F−measure = Precision×Recall
(1−α)×Precision+α×Recall , with α = 0.5.

Sample results of our main algorithm are shown in Figure
4, and our numerical results are shown in Tables I and II. We
show a sample of the U-Net results in Figure 3.

While Table II cites results by other authors, a direct
comparison of our method with theirs is not possible. The
lack of a standardized dataset for road quality assessment
results in every work being tested on a custom dataset,
independent of other work in the field. Moreover, metrics are
measured differently throughout various works. For example,
the works in [8], [10], [12], [14] don’t report the results of
crack detection, but an overall road quality assessment for a
whole image, making comparing metrics between our method
and theirs inconclusive. While a majority of researchers that
work on crack detection report their metrics on cracks in a
manner similar to ours [15], [16], since their images are in a
different image space (mainly top-down images, as opposed
to perspective images as with our work) these metrics can
also be skewed since the metrics are based on percentages
of correctly/incorrectly labelled pixels. With the exception of
[15], the methods we reviewed did not offer any source code
to experiment on our dataset with, and we could only extract
the results cited in their work.

We argue that the results in Table I are more useful.
These results demonstrate the ability of Fisher vector en-
coded features and an SVM in detecting damaged road in
perspective images with high accuracy. This proves that a
road assessment system based off of street view data is indeed
viable, and points to the fact that we can, and have, emulated
a crucial portion of a surveyor’s process of road assessment.
The SIFT features coupled with the Fisher vector encoding
have transformed the image space into one where road defects
are distinguishable from good quality road using an SVM.
This feature space is highly correlated with image “texture”
features as explored in [3], and we believe it is an effective
feature space for the problem of road quality assessment.

Qualitatively, Figure 4 paints a clear picture of what the
algorithm can do. The algorithm detects defects and its mea-
surement of “severity” peaks around the center of a defect. A
simple non-maximum suppression step allowed us to shrink
the large areas into skeletons of single-pixel thickness. This
skeleton is the true fruit of our results, as it can be used to
classify the defect as a longitudinal or transverse crack and
to measure crack length and width. Furthermore, an easily
detectable pattern of cracks represented by the skeleton can
be deduced to be alligator cracking, while a circular pattern
is likely to be a pothole.

The deep learning architecture suffered from lack of data,
and was unable to properly learn the class of “defective road”.
This was more than likely due to the common problem of
class-imbalance where the network was more interested in
minimizing its loss by perfecting the common “background”
class over the rarer “defective road” class. A future step in
mitigating this could be experimenting with a modified loss
function to penalize the network more for missing a defect.
However, there was a slight upside to the network being very

Fig. 3: The original image(top) and the output activations
of our trained U-Net overlaid over the image in the jet
colorspace, red implies a larger activation, while blue is a
smaller activation. A notable trait of the U-Net was its ability
to maximize its activations around the defect itself.

TABLE I: Results for Defect Region Proposal

Method F-measure Precision Recall FPR
Ours 93.12% 93.48% 92.77% 2.93%

U-Net 55.91% 43.36% 78.68% 6.04%

TABLE II: Results for Individual Crack Detection

Method F-measure Precision Recall FPR
Our Method 92.84% 86.64% 100% 0.02%
Oliviera [15] 93.5% 92.2% 95.5% 4.5%
Marques [16] 93.07% 88.52% 98.85% -%

particular about what it labels as “defective road” in that the
network learned to hone in on the specific defect at even finer
levels than hand-labelled data. In a sense the network was
treating the human labels as “weak labels”, which indeed they
were as a the labelled regions often included good quality road
surrounding the defect. This could mean that annotating future
datasets for this kind of architecture can be made easier since
annotators don’t have to follow an individual defect precisely,
but simply annotate a rectangle or loose shape around it.

V. CONCLUSION

Despite not having quantitative results to compare against,
we saw that the method was able to single out cracks and
poor road regions well, and perform quite favourably. The
recall of 100% is an indication of the performance of the
initial crack segmentation step. The high precision of the
road segmentation algorithm [4] provided us with a reliable
segmentation on which to detect cracks. We can also see that
the portions of the road the segmentation algorithm missed on,
in the distance and on the boundaries, were not detrimental
to the crack detection algorithm. The precision could be
improved by making the crack detection algorithm stricter,
however, we did not deem that necessary after qualitatively
assessing the algorithm output. Despite the low quality and
coarseness of our manually labelled data, the classifier was
able to truly learn what ‘distressed’ road looks like. Texture
was the key cue in detecting poor roads, and it is the
one we utilized, and it predictably generated good results.
Whether the data is collected from an online database like
Google Street View, or on a municipal level, the method is
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Fig. 4: Sample crack detection results of our algorithm. The crack detection scheme displays per-pixel severities of detected
defects in blue and green for ‘mild’ defects, orange for ‘medium’ defects and red for ‘severe’ defects. The blue boxes contain
information about the severity of the defect instance as a whole, using information collected from the per-pixel severities.

still applicable. As long as the images show these distress
artefacts, the algorithm can be trained to detect them. On the
other hand, a deep learning algorithm may be difficult to apply
in such a data-scarce manner, and would require significantly
more data to become practically applicable.
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