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Abstract—We present a hypothesis test to associate ship track
measurements to an edge of a given graph that statistically models
common traffic routes in a given area of interest. The association
algorithm is based on the hypothesis that ship velocities are
modeled by mean-reverting stochastic processes. Prior knowledge
about the traffic is provided by the graph in form of probability
density functions of the mean-reverting kinematic parameters
for each node and edge of the graph, that are exploited in
the formalization of the association algorithm. Tests on real
Automatic Identification System (AIS) data show a qualitatively
good association performance. Future developments of this work
include the development of specific quantitative metrics to assess
the association performance.

Index Terms—Maritime surveillance, knowledge based track-
ing and prediction, statistical track association, graphs, mean-
reverting stochastic processes.

I. INTRODUCTION

In recent years Automatic Identification System (AIS)
data has become heavily used for maritime surveillance and
situational awareness, thanks also to a global and steadily
increasing compliance with international regulations. As a
consequence, networks of AIS receivers are growing and
producing very large volumes of data day by day, which open
up to interesting research opportunities. One notable example
is the development of models and methods to extract and
identify meaningful representative patterns, such as typical (or
normal) ship traffic routes in a given area of interest [1], [2].

A network graph traffic model has been introduced re-
cently [3], [4], in which way-point areas, i.e. regions where
ships are more likely to change their direction or speed, are
represented by graph nodes, and edges are representative of
typical ship transitions from one way-point area to another. In
a model like this, a crucial step before tracking and prediction
is the association of ship track measurements to an edge or a
node of the graph. The association is typically performed by
means of distance-based methods.

In this paper we propose a statistical Bayesian approach that
takes into account possible sources of uncertainty inherently
related to the problem at hand. The approach is based on
the mean-reverting model of ship trajectories presented in [3],
[5], [6] and the use of priors on mean-reverting kinematic
parameters learned during the construction of the traffic graph.
A historical set of AIS data is used for estimation of the graph
parameters, i.e. nodes, connectivity matrix and kinematic
priors associated to each node and edge. The following section
formalizes the problem as a maximum a posteriori statistical

test assuming the graph is given. The learning of the graph
is out of the scope of this paper, and interested readers can
refer to [3], [4] for learning methods that can be used to build
vessel traffic graph models.

A. Problem statement

Supposing that in a given area the normal traffic routes
are modeled by a directed graph having M nodes, the
association problem consists in deciding the edge eij =
[i, j]T, where i, j = 1, . . . ,M , along a ship is navigating,
given the ship trajectory s0:N−1 = [sT

0, . . . , s
T

N−1]T, where
sn = [xT(tn), ẋT(tn)]T is the kinematic state at time tn,
n = 0, . . . , N − 1, and x(tn) and ẋ(tn) are the vessel
position and instantaneous velocity, respectively, in a Cartesian
coordinate reference system. The association criteria is the
maximum a posteriori (MAP) hypothesis test as follows:

êij = arg max
i,j=1,...,M

[P (eij |s0:N−1)] , (1)

where P (eij |s0:N−1) is the probability that the ship is nav-
igating along the edge eij , between an origin node i and a
destination node j, given the measurements. A test for only
the initial node can be derived by marginalizing (1) as follows:

î = arg max
i=1,...,M

[P (i|s0:N−1)] =

= arg max
i=1,...,M

 M∑
j=1

P (eij |s0:N−1)

 . (2)

In this work, s0:N−1 does not contain any way-point, i.e.
the ship, in [t0 tN−1], is navigating along an edge, without
maneuvering and the kinematic state can be modeled by a
stationary process. The normal trajectory of ships is assumed
to be piece-wise linear, following a sequence of way-points.
Each node of the graph is modeled by a distribution of way-
point positions, ωi, with probability density function (pdf)
p (ωi). A generic edge of the graph, eij , represents a linear
segment of the ship trajectory between an origin node i and a
destination node j (see Fig. 1). Each edge is modeled by the
travel time, τij , with pdf p (τij) and by a vector of kinematic
parameters, φij , with pdf p

(
φij
)
. A parameter vector for

the edge eij can be defined as θij =
[
ωT
i ,ω

T
j ,φ

T

ij , τij
]T

.
In order to simplify the implementation of the association
test, as a working hypothesis, the edge parameters are con-
sidered independent so that the pdf of θij can be written
as p (θij) = p (ωi) p (ωj) p

(
φij
)
p (τij). It is worthwhile to
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note that the theoretical formulation of the test, reported in
section II, is not affected by this strong hypothesis. The test
implementation, see section II-A, that exploits such hypothesis
is provided as an example. The same considerations apply to
the Gaussian assumption of the edge parameter pdfs. However,
such simplifications do not compromise the proposed associ-
ation procedure tested on real-data.

Fig. 1. Definition of a traffic graph edge.

A ship’s kinematic state, sn, at time tn, along an edge of
the graph is modeled by a mean-reverting process as described
in [5] and [6]. Under this hypothesis, the distribution of sn
is Gaussian, with mean and covariance given by the first-
and second-order moments of the solution of a stochastic
differential equation (SDE) with sn−1 as initial condition [5],
[7]. In particular, the first-order moment, µsn , is given by:

µsn = µsn(sn−1,γij ,vij ,∆tn) = (3)

Φ
(
∆tn,γij

)
sn−1 + Ψ

(
∆tn,γij

)
vij ,

where Φ
(
∆tn,γij

)
is the state transition matrix,

Ψ
(
∆tn,γij

)
is the control input matrix, ∆tn = tn − tn−1,

vij is the long-run mean velocity, i.e. the desired velocity of
a ship, and γij is the vector of mean-reverting parameters [5].
The second-order moment, Σsn = Σsn(C̃ij ,γij ,∆tn),
defined in [5], is a function of ∆tn, γij and the noise process
covariance C̃ij . The expressions of all the involved matrices
are not reported here for the sake of brevity. For details,
the reader can refer to [5]. It is also worthwhile to mention
that the Gaussian distribution of the state sn given sn−1 is
a direct consequence of assuming the dynamic of the ship
as a mean-reverting process, a hypothesis which has been
extensively validated using real data in [5].

In the mean-reverting motion model, the instantaneous
velocity of the ship, when perturbed, is forced toward vij in
a certain amount of time that depends on a characteristic time
constant. In this work, vij depends on the graph edge, eij ,
while the remaining parameters, γij and C̃ij are assumed
constant in a given region of interest (ROI) and are esti-
mated by following the procedure in [5]. In the next section,
since γij and C̃ij are constant, the first- and second-order
moments of sn are written as µsn = µsn(sn−1,vij ,∆tn)
and Σsn = Σsn(∆tn), while the mean-reverting kinematic
parameter vector is set to φij = vij .

The graph parameters, i.e. the node number, the connectivity
matrix and p (θij), are estimated by processing a set of AIS

data collected over the ROI for a long period of time. This
paper is focused on the derivation of the statistical association
test (1) given the graph and the target track data. The reader
can find examples on how to build the traffic graph in [3] and
[4], where the hypothesis of mean-reverting ship motion is
exploited in a kinematic parameter change detector to detect
ship way-points and estimate the graph parameters.

B. Paper organization

The paper is organized as follows. Section II details the
derivation of the MAP test and, specifically, the posterior
P (eij |s0:N−1). Then, two implementations of the test are
described, one based on Monte Carlo simulation and the other
on the unscented transform (UT). Section III shows results
obtained by processing a set of real AIS data collected in
the Eastern Atlantic. Section IV is devoted to conclusion and
future work.

II. TRACK-TO-GRAPH ASSOCIATION

The hypothesis test is iteratively performed by using track
measurements in a sliding window of N samples, collected at
time instants in the set Tn ≡ {tn−N , tn−N+1, . . . , tn}. The
associated edge êij becomes formally a function of time, i.e.
êij = êij (tn), with time dependency hereafter dropped for
the sake of clarity.

The posterior P (eij |s0:N−1) can be factored as

P (eij |s0:N−1) =
P (eij)Ls0:N−1|eij (θij)

p(s0:N−1)
, (4)

where Ls0:N−1|eij (θij) = p(s0:N−1|eij ;θij) is the likelihood
function of the measurements given eij , P (eij) is the prior
of the edge vector, which is estimated during the analysis of
the historical data set of ship trajectories to learn the graph
parameters (P (eij) = 0 means that i and j are not connected),
and p(s0:N−1) is the prior of the measurements. The likelihood
depends on the edge parameters, θij , which can be considered
as nuisance parameters. Considering the vessel state dynamic
as a Markov process, the likelihood can be written as follows:

Ls0:N−1|eij (θij) = p(s0|eij ;θij) (5)

×
N−1∏
n=1

p(sn|sn−1, eij ;θij),

where p(sn|sn−1, eij ;θij) is the vessel state transition density
and p(s0|eij ;θij) is the prior of s0, both conditioned on
eij and function of the edge parameters θij . As stated in
section I-A, for a mean-reverting process the transition and
prior densities are Gaussian with mean and covariance given
by the first and the second order moment of the solution
of a linear SDE with initial conditions given by sn−1. The
moments are calculated given the parameters θij . Then, the
transition densities can be written as:

p(sn|sn−1, eij ;θij) = p(sn|sn−1, eij ;vij)
= Nsn [µsn(sn−1,vij ,∆tn),Σsn(∆tn)],

(6)

where µsn(sn−1,vij ,∆tn) is the first order moment of sn
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which is a function of the initial state sn−1, the mean velocity
vij and the time interval ∆tn = tn−tn−1, while Σsn(∆tn) is
the second order moment which depends on ∆tn. The notation
Nx(µx; Σx) indicates the multivariate normal pdf of the Nx-
dimensional random variable x ∈ <Nx having mean vector
and covariance matrix given by µx and Σx, respectively.

The prior density of s0 is also Gaussian:

p(s0|eij ;θij) = Ns0 [µs0(ωi,vij , τi0),Σs0(τi0)], (7)

where τi0 is the time it takes the vessel to reach s0 from the
way-point position, ωi, associated to the source node i (see
Fig. 2). As an approximation, τi0 is considered proportional to
the edge transit time τij , τi0 = ατij , where the proportionality
factor α = min[1, ‖x(t0)− ωi‖ / ‖ωj − ωi‖] is the fraction
of the path traveled from the starting way-point area to x(t0)
with respect to the whole length of the edge.

Fig. 2. Prior distribution of the vessel state at t0.

Given (6) and (7), the likelihood (5) can be expressed as
follows:

Ls0:N−1|eij (θij) = p(s0|eij ;θij)Λs1:N−1|eij (vij) (8)

where

Λs1:N−1|eij (vij) =
N−1∏
n=1

p(sn|sn−1, eij ;vij) =

=
N−1∏
n=1

Nsn [µsn(sn−1,vij ,∆tn),Σsn(∆tn)].

(9)

The edge nuisance parameters can be now averaged out as
follows:

L̄s0:N−1|eij = Eθij [Ls0:N−1|eij (θij)] =

= Eθij [p(s0|eij ;θij)Λs1:N−1|i(vij)] =

=

∫
θk

Ls0:N−1|eij (θij)p(θij),

(10)

where p(θij) is the prior density of the edge parameters as
defined in section I-A.

The posterior can be redefined by substituting the mean
likelihood (10) in (4) so that:

P (eij |s0:N−1) ∝ P (eij)L̄s0:N−1|eij =

= P (eij)Eθij [p(s0:N−1|eij ;θij)] =

= P (eij)Eθij{Ns0 [µs0(ωi,vij , τi0),Σs0(τi0)]

×
N−1∏
n=1

Nsn [µsn(sn−1,vij ,∆tn),Σsn(∆tn)]}.

(11)

The MAP association test is finally obtained by substituting
(11) into (1) or (2).

A. Test implementation

The hypothesis tests is first implemented by a Monte Carlo
Method (MCM) as described in section II-A1. An approxi-
mated method will be considered such as the one based on
the Unscented Transform (UT) which will be detailed later in
section II-A2.

1) MCM implementation: The calculation of the posterior
in (11) using an MCM requires sampling from the distributions
of the traffic model parameters, p (θij), defined in section I-A.
As in [4], the way-point positions, ωi and ωj , and the mean
velocity, vij , are sampled from the Gaussian mixture models
(GMM) learned during the construction of the traffic graph.
The travel time, τij , is sampled from an Erlang distribution,
whose parameters are estimated during the graph training too.
If the edge travel time samples used in the graph learning step
are not sufficient to estimate the parameters of the Erlang pdf,
the travel time is sampled from the empirical distribution with
replacement, as in a bootstrap procedure. Given the edge eij ,
with i, j = 1, . . . ,M , a set of Np particles, P ≡ {θijl}

Np
l=1, is

generated by randomly sampling from the distribution of the
edge parameter vector θij . The mean likelihood (10) is then
approximated by averaging the likelihood samples calculated
for each particles in P . The mean likelihood approximation is
then weighted by P (eij) and used in the association test.

2) UT implementation: In this subsection, an alternative
approach to the implementation of the track-to-graph associa-
tion algorithm is proposed in order to improve the algorithm
processing time performance. The implementation is based on
the calculation of the mean likelihood by using the UT [8],
which is an approximated method to calculate the first- and
second-order moments of a random vector after a non-linear
transformation function, given the first- and second-order
moments of the random vector before. It builds on the idea that
it is easier to approximate a smooth pdf than a generic non-
linear function [8]. The mean likelihood (10) is evaluated by
approximating the distribution of the graph parameter vector,
θij ∈ <Nθ , by a multivariate Gaussian:

L̄s0:N−1|eij = Eθij [Ls0:N−1|eij (θij)] =

=

∫
θij

Ls0:N−1|eij (θij)p(θij) ≈

≈
∫
θij

Ls0:N−1|eij (θij) · Nθij [µθij ,Σθij ]

(12)
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where µθij = [µT
ωi ,µ

T
ωj ,µ

T
vij , µτij ]

T and

Σθij =


Σωi 02×2 02×2 02×1
02×2 Σωj 02×2 02×1
02×2 02×2 Σvij 02×1
01×2 01×2 01×2 σ2

τij

 , (13)

with the mean vectors, µ, and covariances, Σ, that are esti-
mated during the graph learning phase [4], using a historical
data set of AIS trajectories. The integral (12) is then approx-
imated by a weighted sum as follows:

L̄s0:N−1|eij ≈
1

NUT
·
2Nθ∑
l=0

wl · Ls0:N−1|eij (χl), (14)

where χl are the so called UT sigma points, with χ0 = µθk
and

χl = µθij −Ll, l = 1, . . . , Nθ

χl = µθij +Ll, l = Nθ + 1, . . . , 2Nθ,
(15)

where Ll is the l-th row of the Cholesky factorization matrix
L of (Nθ + κ) ·Σθij , with LT ·L = (Nθ + κ) ·Σθij , where
κ is a scaling parameter.

The method relies on a deterministic sampling scheme of the
input space which provides the sigma points in (15). These pe-
culiar points for the input distribution are propagated through
the non-linear likelihood function to calculate the output sigma
points, Ls0:N−1|eij (χl), which are used to evaluate the mean
likelihood by (14). In this way the average can be evaluated
deterministically by using a fixed number of samples that is
of the order of the input vector dimension, resulting in a
considerable reduction in the required processing time.

III. RESULTS

The track-to-graph statistical association algorithm has been
tested by using real AIS data sets collected in different areas
and time frames. AIS tracks have been used to construct
the traffic graph in the ROI and as ground-truth to test
the association algorithm. In this section a real-world data
set is considered (see Fig. 3), which has been collected in
the Eastern Atlantic, specifically off the coast of Portugal
(min/max lat=35.5/42.5 deg, min/max lon=-11/-6.5 deg) from
01-Jun-2016T10:07:03+00 to 31-Jul-2016T23:58:16+00. The
traffic graph for this area has been estimated by using the
procedure in [4]. The two association algorithm implemen-
tations, described in section II-A, have been tested showing
similar results. The performance of the association test is
qualitatively evaluated by checking the coherence between
way-point positions and mean velocity distributions of the
associated edge, and the present and future kinematic state
of the ground truth ship track with respect to the data window
under test. In general, applying this qualitative criteria, the
association test performs well for the chosen data sets. The
results reported make use of the UT association test implemen-
tation. As an example, Fig. 4 provides a spatial representation
of the traffic graph with nodes located at the mean values of
the way-point position clusters and connections between nodes
i and j traced if P (eij) 6= 0. Fig. 5 shows some examples

Fig. 3. Eastern Atlantic AIS track data set and selected ROI.

Fig. 4. Traffic graph model spatial representation. The nodes are the mean
of each way-point position cluster.

of simulated trajectories using the mean-reverting model with
parameters distributed according to the traffic graph priors,
p (θij). The graph-to-track association has been tested using
a data window of 5 samples. Fig. 6 and Fig. 7 show the
association results for two different real tracks. The associated
initial node is represented by the way-point position cluster
mean and covariance, µωi and Σωi , respectively, with the
average of vij , that is µvij , superimposed.
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Fig. 5. Example of traffic state sequence and simulated vessel trajectories.

Fig. 6. Association test example 1.

IV. CONCLUSION AND FUTURE WORK

The MAP rule has been proposed to associate a ship tra-
jectory to an edge (or node) of a given graph that statistically
models typical vessel traffic routes in a ROI. The approach is
based on the assumption that ship velocities are modeled by
mean-reverting processes. Prior knowledge of mean-reverting
kinematic parameters, which are learned during the construc-
tion of the graph from historical data, are exploited to compute
the MAP rule. The paper proposes two implementations of
the algorithm, one based on MCM, the other one on the UT.

Fig. 7. Association test example 2.

Tests on real AIS data show a qualitatively good association
performance. Future developments of this work include the
definition and the evaluation of suitable performance metrics.
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