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Abstract—In this paper, we propose a system for rare sound
event detection using a hierarchical and multi-scaled approach
based on Convolutional Neural Networks (CNN). The task
consists on detection of event onsets from artificially generated
mixtures. Spectral features are extracted from frames of the
acoustic signals, then a first event detection stage operates as
binary classifier at frame-rate and it proposes to the second
stage contiguous blocks of frames which are assumed to contain
a sound event. The second stage refines the event detection of
the prior network, discarding blocks that contain background
sounds wrongly classified by the first stage. Finally, the effective
onset time of the active event is obtained. The performance of
the algorithm has been assessed with the material provided for
the second task of the IEEE AASP Challenge on Detection and
Classification of Acoustic Scenes and Events (DCASE) 2017. The
achieved overall error rate and F-measure, resulting respectively
equal to 0.22 and 88.50% on the evaluation dataset, significantly
outperforms the challenge baseline and the system guarantees
improved generalization performance with a reduced number of
free network parameters w.r.t. other competitive algorithms.

Index Terms—Convolutional Neural Network, Sound Event
Detection, DCASE2017, Linear Prediction, Discrete Wavelet
Transform

I. INTRODUCTION

Nowadays, one of the most important tasks in the field of
computational auditory scene analysis (CASA) is the auto-
matic sound event detection (SED), which can be exploited in
various application areas, ranging from acoustic surveillance
[1], [2] and multimedia event detection [3] to smart home
devices [4]–[6]. In particular, SED is defined as the task of
analysing a continuous audio stream in order to extract a
description of the sound events occurring in it. This description
is commonly expressed as a label that marks the start, the
ending, and the nature of the occurred sound (e.g., children
crying, cutlery, glass jingling).

The “Detection of rare sound events” task of the 2017
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge [7] consisted in determining the presence
and the precise onset time of three types of sounds, “baby
cry”, “glass break” and “gun shot” in artificially generated
audio sequences. The task takes into account real-world issues
that introduce additional complexity to the problem, such as
the acoustic variability of the sounds belonging to each event
class, the presence of environmental noise and its variability,
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etc. The rules of the challenge allow to know a priori the
event typology possibly present in the audio sequence under
examination, thus it is possible to have a separate binary
classifier for each class.

A. Related Works

In the recent era of the “Deep Learning” different ap-
proaches to SED have been proposed marking use of the
capabilities of deep neural networks (DNNs) to learn the rela-
tion between time-frequency features of the raw audio signal
and a target vector representing sound events. Although the
DNNs based systems are more computationally intensive with
respect to widely used statistical modelling methods such as
hidden Markov models (HMMs) or Gaussian mixture models
(GMMs) [8], [9], a comparative study [10] has highlighted
that they are able to achieve top performance in the sound
recognition problem.

A well-fitting example of such performance is given in [11],
where different DNNs are trained on three datasets recorded
in real life environments in order to detect abnormal events or
hazardous situations exploiting only the information carried
by the acoustic signal. The experimental results show that
Deep Recurrent Neural Networks (DRNNs) outperform the
probabilistic approaches over the three databases.

In occasion of the DCASE 2017 challenge, many novel
systems featuring deep neural networks have been proposed,
in particular involving hybrid architectures making use of
Convolutional Neural Networks (CNN) and DRNNs. In detail,
both the first two classified algorithms make use of mel
spectrogram coefficients as spectral representation of the audio
signal which is processed by a CNN with 1D filters in the case
of the first ranked [12] or by a 2D CNN with frequency pooling
in the case of the second classified [13]. The architectures are,
then, combined with recurrent layers to process the features
obtained by the convolutional blocks. In [14] the authors
propose a hierarchical structure based on CNNs and DNNs
trained with multi-task loss functions. Specifically, in the first
stage the networks are trained for background noise rejection,
using a weighted loss function to penalize the false positive
errors. In the second stage the multi-task loss enables the
networks to simultaneously perform the event classification
task and the onset time estimation. This approach obtained
the third place in the final ranking. All of the aforementioned
systems largely outperform the baseline system based on
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Fig. 1. Flow chart of the proposed method for rare sound event detection.
Each event class implements such a scheme. In the first column are shown
the spectrograms of the input signal and of the detected events. In the second
column the network outputs at each stage of the algorithm.

a Multi Layer Perceptron architecture (MLP) and Logmel
energies as features.

II. PROPOSED METHOD

The proposed system is a hierarchical algorithm composed
of five stages: the acoustic features extraction (II-A), the
event detection stage 1 (II-B) which produces an output at
frame-rate and a dedicated smoothing procedure of this signal
(II-C). Then, a refinement of the previous decision stage
(II-D) is performed by a 2D CNN which discards possible
false positives detected by the stage 1. The final decision
procedure (II-E) annotates the effective onset time of the active
event. In Fig.1 the phases of the algorithm are depicted. This
is an extended and improved method with respect to our
contribution to the DCASE 2017 [15].

A. Features Extraction

The feature extraction stage operates on mono audio signals
sampled at 44.1 kHz. Following the results obtained at the
DCASE2017 challenge by [13], we use the log mel energy
coefficients (Logmel) as an efficient representation of the
audio signal. In addition, we explored the combination of
the Logmel with features based on wavelet coefficients and
forward prediction errors (WC-LPE) [16]. A brief description
of the features extraction procedures is given below.

1) Logmel coefficients: The audio signal is split into frames
of 40 ms and a frame step of 20 ms, then the Logmel coef-
ficients are obtained by filtering the power spectrogram of
the frame by means of a mel filter-bank, then applying a
logarithmic transformation to each sub-band energy in order to
match the human perception of loudness. We used a filter bank
with 40 mel scaled channels, obtaining 40 coefficients/frame.

2) WC-LPE Feature: The Wavelet Coefficient (WC) and
Linear Prediction Error (LPE) feature set relies on non-
stationary signal components and it has been successfully
exploited for musical note onset detection [16]. WC-LPE
extraction is done by first processing the input signal with

a Discrete Wavelet Transform (DWT) dyadic tree. Then, each
DWT sub-band is filtered by a linear prediction error filter
(LPEF), obtaining Forward Prediction Errors (FPE). All LPEF
outputs and DWT sub-bands are resampled to an intermediate
sampling rate and rectified. The feature set is, finally, created
from the DWT sub-bands, their first order time derivatives, the
FPE and their first order time derivatives.

For both feature sets the range values of each coefficient
is normalized independently according to the mean and the
standard deviation computed on the training sets of the neural
networks.

B. Event Detection Stage 1

The Event detection (ED) stage 1 has the goal to discard
frames containing only background sounds, reducing as much
as possible the false negative decisions. We evaluated two
DNN architectures as binary classifiers: the MLP and the CNN
with 2D kernels and frequency pooling. In both cases, the
output layer is formed by two units with the softmax non-linear
function. Thus, the networks outputs represent the probabilities
that an input feature vector x[t] at the frame index t belongs
to the background or the event class. In our analysis, we
evaluated as network input the Logmel coefficients and the
combination of the latter with the WC-LPE features.

1) Multi Layer Perceptron Neural Network: The artificial
neuron is the main element of the MLP. It consists of an
activation function applied to the sum of the weighted in-
puts [17]. Neurons are then arranged in layers, with feed-
forward connections from one layer to the next. The supervised
learning of the network makes use of the stochastic gradient
descent with error back-propagation algorithm. The network
is designed to consider a temporal context C, thus the network
input feature vector x̂[t] is obtained concatenating x[t] with
the previous x[t − c], with c = 1, . . . , C. During the training
procedure, additive zero-centered Gaussian noise with σ = 0.1
was applied to x̂[t] as a form of data augmentation, improv-
ing the generalization capabilities of the DNN and avoiding
overfitting [11].

2) Convolutional Neural Network: CNNs are feed-forward
neural networks [18] composed of three types of layers: con-
volutional layers, pooling layers and densely connected layers
of neurons. The convolutional layers perform the mathematical
operation of convolution between a multi-dimensional input
and kernels of fixed size. The kernels are generally smaller
compared to the input, allowing CNNs to process large inputs
with a modest number of parameters to learn. CNNs are often
used in audio tasks, where they exploit one input dimension to
keep track of the temporal evolution of a signal [19]. In our
case the convolutional layer input is a matrix X ∈ RF×T ,
where F and T represent respectively and the number of
Logmel channels and the number of frames of the acoustic
signal. When we combine the two aforementioned feature sets,
we process them with two separate sets of convolutional layers,
gathering two feature maps that are concatenated along the
feature axis. Before concatenation, batch normalization [20]
is applied to each feature map and a leaky rectified linear unit
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activation function (LeakyReLU) with α = 0.3, followed by
a feature domain max-pooling layer. Finally, fully connected
layers are stacked, applying the same weights and biases to
each frame element. The output layer for each of the binary
classifier neural networks has two neurons corresponding to
the probability of the background or the event onset. We
can discard, thus, one of the two neurons without loss of
information, and we will consider the output of the neuron
corresponding to the event activation u[t] = yt,2, as the output
of the network at frame t.

The neural networks training was accomplished by the
AdaDelta stochastic gradient-based optimisation algorithm
[21] for a maximum of 500 epochs on the binary cross
entropy loss function. The optimizer hyperparameters were
set according to [21] (i.e., initial learning rate lr = 1.0,
ρ = 0.95, ε = 10−6). An early stopping strategy monitoring
the validation loss was employed in order to reduce the
computational burden. Thus if the validation loss does not
decrease for 20 consecutive epochs, the training is stopped
and the last saved model is selected as the final model. In
addition, dropout is used as regularization technique [22] with
rate 0.5.

C. Post Processing

In the post processing stage, each network output is con-
volved with an exponential decay window of length M defined
as:

w[t] = e
t
τ with τ =

−(M − 1)

loge(0.01)
(1)

The result is processed with a sliding median filter with local
window-size k. Finally, a decision threshold θ is applied.

D. Event Detection Stage 2

The aim of the event detection stage 2 is to eliminate false
positives, by removing the events wrongly detected at the
previous stage. This is done by feeding a binary-classifier
CNN with chunks of features in correspondence to the detected
events (colored region in the bottom right spectrogram of
Figure 1). At this stage only Logmel coefficients are used as
input features, in order to reduce the computational burden
of the model. Non-overlapping feature matrices X of size
F×20 are used during training, while 95%-overlapping feature
matrices are employed during testing (1-frame shift). A chunk
size of 20 corresponds to 0.4 seconds of audio, i.e. half the
minimum possible length of the occurring events, leading to
an analysis of the audio event at different time and frequency
resolutions with respect to previous stages. The ED Stage 2
NN is trained for 100 epochs on the binary cross entropy loss
function with the AdaDelta gradient descent algorithm.

E. Final Decision

For each audio sequence, we perform a classification on
contiguous blocks of frames detected as event by the ED stage
1. Among contiguous frame chunks classified as “event” by the
CNN, the first frame with highest network output is indicated
as event onset.

III. DATASET

The DCASE2017 challenge dataset [23] has been used to
develop and evaluate the algorithm. The dataset consists of 30-
second long sequences of background acoustic scenes recorded
in different public or domestic spaces (park, home, street,
cafe, train etc.) [24], some of which have been added with
isolated recordings from at most one of the three different
target sound event classes: baby crying, glass breaking and gun
shot. The presence probability of a sound event in each mixed
sequence of the original Development set was 0.5, thus we
kept only sequences containing a sound event of the original
training set and we generated additional mixtures assigned
to the training and the validation sets. For the development
set a total number of sequences respectively equal to 2750
for training, 300 for validation and 1496 for test have been
employed. This change increases the percentage of the frames
including a target event in the training data, which helps to
ease the problem of data imbalance. In addition, due to the fast
decay of the “gun shot” sound, we generated more sequences
containing this event class compared to the others, in order to
maintain approximately the same percentage between frames
containing event samples and backgrounds.

In the evaluation set, the training and test sequences of
the development set are combined into a single training set,
while the validation set is the same used in the Development
dataset. The system is evaluated against an “unseen” set of
1500 samples (500 for each target class) with a sound event
presence probability for each class equal to 0.5.

IV. EXPERIMENTAL SET-UP

According to the DCASE 2017 guidelines, the performance
of the proposed algorithm has been assessed by using the
development dataset for training and validation of the system.
Furthermore, a blind test on the provided evaluation dataset
has been performed. The performance metric of the DCASE
2017 challenge is the event-based error rate (ER) calculated
using onset-only condition with a collar of 500 ms. Detailed
information on metrics calculation are available in [25]. The
algorithm has been implemented in the Python language using
Keras [26] as deep learning library. All the experiments were
performed on a computer equipped with a 6-core Intel i7,
32 GB of RAM and two Nvidia Titan X graphic cards.

A. First Event Detection Stage

To assess the performance of the MLP employed in the
event detection stage 1 we resorted to a random search

TABLE I
HYPER-PARAMETERS OPTIMIZED IN THE RANDOM-SEARCH PHASE FOR

THE MLP ED STAGE 1, AND THEIR RANGE.

Parameter Range Distribution
MLP layers Nr. [2 - 7] uniform

MLP layers dim. [20 - 4048] log-unifom
MLP Context [1 - 7] uniform

Activation [tanh - relu] uniform
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TABLE II
RESULTS IN TERMS OF ER SCORE FOR ALL THE EVALUATED COMBINATION OF PROPOSED ANNS AND FEATURES USED IN EVENT DETECTION STAGE 1.

Development Dataset Evaluation Dataset
Features Babycry Glassbreak Gunshot Average Babycry Glassbreak Gunshot Average

MLP ED Stage 1
Logmel 0.19 0.12 0.16 0.16 0.64 0.54 0.58 0.59
Logmel + WC-LPE 0.23 0.10 0.19 0.17 0.76 0.55 0.55 0.62

CNN ED Stage 1
Logmel 0.23 0.13 0.18 0.18 0.48 0.23 0.44 0.38
Logmel + WC-LPE 0.25 0.09 0.16 0.17 0.46 0.10 0.36 0.31

MLP ED Stage 1 + CNN ED Stage 2
Logmel 0.14 0.08 0.16 0.13 0.31 0.25 0.44 0.33
Logmel + WC-LPE 0.20 0.09 0.19 0.16 0.37 0.27 0.40 0.35

CNN ED Stage 1 + CNN ED Stage 2
Logmel 0.19 0.10 0.16 0.15 0.31 0.17 0.39 0.29
Logmel + WC-LPE 0.18 0.08 0.17 0.14 0.25 0.10 0.31 0.22

strategy [27]. Table I shows the parameters explored in the
random search, as well as the prior distribution and ranges. We
evaluated 300 sets of layout parameters (100 for each event
class) repeated for the two input features combination.

Regarding the CNNs, we explored the hyper-parameters
space by means of a grid search for a total of 75 experiments
(25 for each event class) covering the number of convolutional
filters per layer {16, 32, 64}, the kernels shape {3× 3, 5× 5},
the number of MLP layers {1, 2, 3} and their respective num-
ber of units {16, 32, 64, 128}. The feature max-pool sizes after
each convolutional layer were {5, 4, 2} for all the explored
layouts. Also in this case the experiments were repeated for
both the input features combination.

A successive grid search was performed for each network
configuration evaluated, in order to find the post-processing
parameters that yielded the minimum error rate. Investigated
parameters in the grid search were: exponential window
length w in the range {10, 20, . . . , 90}, median filter kernel
k in the range {9, 11, . . . , 31} and threshold θ in the range
{0, 0.05, . . . , 0.5}.

Once the best models on the Development dataset were
found, a fine tuning of the post processing parameters was
done during the validation stage, in order to assess the
performance of the whole system. In fact, the hierarchical
architecture of the algorithm allows to set a lower threshold
in the first decision stage in order to reduce the deletions at
the expenses of some insertions. These will be removed by
the ED stage 2.

B. Refinement Stage

1) Training set for CNN based ED Stage 2 : To compose
the dataset for training and evaluation of the CNNs dedicated
to each target audio event we proceeded as follows: the
samples of each event class were selected between the audio
sections respectively labelled as “baby cry”, “glass break” and
“gun shot” from the mixtures of the DCASE 2017 develop-
ment dataset, in addition with the isolated events source sig-
nals. To obtain the background samples, we processed with the
first stage of our algorithm sequences from the same dataset
which do not contain events. Thus, the frames detected as
event in this case represent the “false positive” or “insertions”

of the stage 1. We used those frames as background samples
in the CNN training phase to improve its event classification
abilities and balancing the dataset.

To design the best refinement CNN model for our purposes,
we generated a shuffle stratified validation split from the
dataset composed as described above. We left out the 30%
of the samples as validation set for the CNN model and we
selected the layout parameters of the neural network based
on the F-measure score obtained on this data sub-set. The
best performing model was the same for all the target audio
events and was composed as follows: three convolutional
layers with {32, 32, 32} filters, respectively, of size 5 × 5.
The convolutional layers were followed by a feature max
pooling layer with kernels of size {5, 4, 2}, respectively. Three
dense layers composed of 32 neurons with tanh activation
functions were applied before the network output layer, for a
total number of network parameters equal to 35K.

V. RESULTS

Results reported in Table II are obtained as follows: we
selected the models with lowest ER for each combination
of DNN architecture and input features operating in the ED
stage 1 and we evaluated the systems separately for each
target class before the ED stage 2 on the Evaluation set,
keeping ED stage 1 post processing parameters fixed. Then,
with the same settings we obtained the performance of the
whole system both on Development and Evaluation datasets.
The architecture composed of a first stage with 2D CNN fed
by Logmel and WC-LPE features resulted the best performing
on the Evaluation dataset, obtaining an average ER equal to
0.17. Details of these architectures are reported in Table III.

TABLE III
DETAILS OF MODELS FOR CNN BASED ED STAGE 1 WITH THE LOWEST
ER ON DEVELOPMENT SET. ALL OF THEM USE A COMBINATION OF LOG

MEL ENERGIES AND WC-LPE AS INPUT FEATURES.

Hyper-parameters Babycry Glassbreak Gunshot
Conv. Kernels 5×5, 3×3, 3×3 3×3, 3×3, 3×3 3×3, 3×3, 3×3
Kernel shape 32, 16, 16 64, 64, 64 32, 16, 16
MLP Layers size 32, 32 128, 128 32, 32
# Parameters 18K 185K 17K
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TABLE IV
COMPARISON BETWEEN THE OBTAINED ER SCORES AND THE NUMBER OF

PARAMETERS WITH THE FIRST THREE RANKED APPROACHES AT THE
DCASE2017 CHALLENGE.

Approach Evaluation ER # Parameters
Lim et al. [12] 0.13 6200K
Cakir et al. [13] 0.17 756K
Proposed system 0.22 108K
Phan et al. [14] 0.27 2100K

The experimental results show how this combination im-
proves generalization properties of the algorithm. In fact, the
MLP based stage 1 with only Logmel features obtains the best
overall ER equal to 0.13 on the Development dataset, but the
performance decreases significantly on the Evaluation set. In
addition, the number of free parameters of the best performing
MLP models was always an order of magnitude greater w.r.t.
the CNN models. Regarding the stage 2, its beneficial effect is
supported especially with the Evaluation dataset: in this case,
the improvement in terms of ER given by the joint detection
procedure is evident and it gives additional robustness to the
system in terms of generalization.

In Table IV the overall results between best ranked systems
of the DCASE 2017 Challenge are compared. It can be
observed that the best two scores have been obtained with
ensemble methods, involving the additional computational
cost of running several architectures in parallel, while the
table reports the number of parameters per architecture. Al-
though the proposed system does not outperform the first
two methods, the average number of network parameters is
significantly lower. This provides greater scalability in real-
world applications.

VI. CONCLUSION

In this paper, a framework that makes use of hierarchical
CNN classifiers fed with Logmel and WC-LPE features has
been proposed for rare SED, providing significantly improved
performance over the baseline system for every target sound
event class in DCASE 2017 challenge dataset. The system
also provides a significant reduction of the network parameters
w.r.t. other competitive algorithms. The multi-scaled approach
inherent to the two different CNN architectures results to be
effective.

For future work, strategies to customize the loss function
embedding the evaluation metric into the training procedure
can be considered. Specifically, this task is particularly affected
by the dataset unbalancing: to counteract this problem an
alternative to the data augmentation is to design tailored loss
functions which enhance the detection of the rare events.
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