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Abstract—Discriminating mental states from brain sig-
nals is crucial for many applications in cognitive and
clinical neuroscience. Most of the studies relied on the
feature extraction from the activity of single brain ar-
eas, thus neglecting the potential contribution of their
functional coupling, or connectivity. Here, we consider
spectral coherence and imaginary coherence to infer brain
connectivity networks from electroencephalographic (EEG)
signals recorded during motor imagery and resting states
in a group of healthy subjects. By using a graph theoretic
approach, we then extract the weighted node degree from
each network and evaluate its ability to discriminate the
two mental states as a function of the number of available
observations. The obtained results show that the features
extracted from spectral coherence networks outperform
those obtained from imaginary coherence in terms of
significant difference, neurophysiological interpretation and
reliability with fewer observations. Taken together, these
findings suggest that graph algebraic descriptors of brain
connectivity networks can be further explored to classify
mental states.

Index Terms—EEG, Spectral Coherence, Imaginary Co-
herence, Weighted Node degree, Motor imagery

I. INTRODUCTION

The ability to distinguish mental states from elec-
troencephalographic (EEG) signals is gaining more and
more importance for several noninvasive applications,
such as brain-computer interface [1] and biometry [2].
The majority of the studies focused on activity features
which characterize single brain regions [3], [4]. How-
ever, temporal dependence-based features could be more
representative of complex neurophysiological processes,
compared to activity of each brain area separately [5].

Functional connectivity measures the dependence be-
tween the activity of different brain areas, reflecting
information exchanges that are crucial to understand

brain organization. There is an increasing interest in
devising novel connectivity estimators [6] to quantify
functional interaction between brain regions [7], possibly
adopting a signal processing on graph perspective [8]
to describe EEG signals in time, frequency, as well
as in novel transform domains such as the Slantlet
domain [9] or the graph spectral domain [10], [11].
Among other state-of-the-art connectivity metrics, the
spectral coherence as well as its imaginary counterpart,
the imaginary coherence, are well-assessed estimators
describing the synchronization in amplitude between
signals [12], [13]. The main difference between the
coherence and the imaginary coherence is that this latter
neglects components that are instantaneously estimated
at all the EEG electrodes due to a smearing effect on
the scalp caused by the conductibility of cerebral tissues
(volume conduction effect) [14].

Here, we study different connectivity-based features to
discriminate between motor imagery and resting states.
Specifically, we study i) the spectral coherence and
imaginary coherence between the EEG signals; ii) the
weighted node degrees of the brain network graphs built
on the above estimates [15], [16]. Finally, we apply
the proposed approaches on high-density EEG signals
recorded in a group of healthy subjects during motor-
imagery and resting states, and we statistically evaluate
their relative ability in separating the two mental states.

II. FUNCTIONAL CONNECTIVITY ESTIMATORS

N signal samples are acquired at frequency Fs in two
different mental states, S1 and S2. Samples are obtained
from M EEG-electrodes for each state, collecting TS1
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trials in S1 and TS2 trials in S2; the procedure is repeated
for I subjects.

The signal Acquisition Stage (AS) in S1 and S2 states
for the i-th user, t-th trial, m-th channel, n-th signal
sample yields the real measurements’ sets:

X (S1) = {x(i,t)m [n]}, S1 AS} (1)

X (S2) = {x(i,t)m [n]}, S2 AS} (2)

For both the ASs, the following power spectral estimates
are computed:
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where wl [n], with l = 0, · · ·LW −1 and n = 0, · · ·N−1
is a suitable set of LW real windows, depending on the
estimation method. For instance, the MultiTaper method
[17] adopts a set of sinusoidal functions of duration
N, whereas the Welch method adopts a set of time
orthogonal functions [18].

We use two estimators to understand the relation
between couples of signals, i.e. the spectral coherence
and imaginary coherence, defined as follows:
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Spectral coherence is a well established estimator used
in literature [19]. Imaginary coherence has the theoretical
advantage of eliminating connectivity at lag 0, [14] that
can be originated by the smearing of the EEG signals on
the scalp caused by the different electrical conductibility
of brain tissues. As shown in Fig. 1, spectral coherence
is generally higher and more sensitive to short-distance
connections than imaginary coherence. In the following
section we adopt a graph theoretical approach to derive
compact description of the inferred EEG connectivity
networks in the two mental states S1 and S2.

III. PROPOSED ALGEBRAIC DESCRIPTOR

A graph G = (V,E), consists of two sets V and E,
such that V 6= /0 and E is a set of pairs of elements of V .
The elements of V = (v1,v2, ...,vn) are the vertices (or

Fig. 1: Behavior of connectivity estimators as a function
of distance between EEG electrodes. Results are pooled
from all the available experimental observations in the
Bbeta frequency band as described in following section.

nodes) of G, while the elements of E = (e1,e2, ...,en)
are its edges (or links) [20]. In our case, the nodes
represent EEG electrodes and their connections are
weighted by the connectivity estimators (spectral coher-
ence and imaginary coherence). In this section, we use
the weighted node degree as a compact index of the
connectivity of each electrode [16].

Specifically, we consider the Coherence-based Node
Degree (CND) and Imaginary Coherence-based Node
Degree (ICND), defined as follows:
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where B denotes the set of frequency indexes selected
for the evaluation and ||.|| denotes the cardinality of the
set.

We then compute the trial-averaged Coherence based
Node Degree statistic under the two mental states:
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and the trial-averaged Imaginary Coherence based
Node Degree:
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Similarly, we define the corresponding measures for
coherence and imaginary coherence, namely the trial-
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averaged Link Coherence
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and the trial-averaged Link Imaginary Coherence
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Our goal is to discriminate between the two mental
states, taking into consideration the above graph de-
scriptors. In the following section, we evaluate their
discriminant ability.

IV. EXPERIMENTAL RESULTS

The above methods are tested on EEG data recorded
in a group of 10 healthy subjects, all right handed.
During the experiment, a subject is in front of a screen,
displaying a target: when the target is up, the subject is
instructed to perform a motor imagery (MI) task with
the right hand (i.e. grasping) and when the target is
down, she/he should just rest. The recording session
consists in 5 runs of 32 trials (or epochs) each, 16 of

MI and 16 of resting. Each trial lasts 5 s; this is the
temporal window used for the connectivity inference
procedure. EEG signals are recorded with frequency
sampling of 1 kHz and then downsampled to 250 Hz. We
consider 74 electrodes in a standard 10-10 configuration.
The obtained signals are pre-processed to identify and
remove artifacts associated to blinks or cardiac activity.
An independent component analysis (ICA) [21] based on
In f omax algorithm [22] is realized with Fieldtrip tool-
box [23] and each component, along with its associated
topography is visually analyzed.

After ICA, we evaluate the defined metrics, where S1
corresponds to MI, and S2 to resting state; the number
of subjects is I = 10, electrodes are M = 74 and trials
are T = 74 per condition. For the spectral estimation
the Welch method with Hanning window of 1 s and
50% of overlap is used [18]. We compute functional
connectivity and connectivity-based node degree in the
two conditions MI and resting state. We then average
the results into four frequency bands: Btheta = 4−7Hz,
Bal pha = 8− 13Hz, Bbeta = 14− 29Hz and Bgamma =
30−40Hz.

Fig. 2: t-value maps resulting from the difference between MI and resting states in the Bbeta band.
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Finally, for each frequency band, we perform a sta-
tistical test to quantify the discriminant ability of the
metrics in the following way:
• In the case of coherence and imaginary coherence,

for each possible couple of channels m1−m2, we
collect the correspondent connectivity values in MI
and resting for the ten subjects;

• For connectivity-based node degree, for each
channel m we collect the metric values for MI and
rest for each subject.

Considering the difficulty of performing a classi-
fication test with only 10 subjects, we decided to
use a statistical test, which describes the discrimi-
native potential of the features. In fact, in both the
cases, a paired permutation test is performed, using
resampling statistical toolkit, with significance level α

= 0.05, corrected for multiple comparisons with False
Discovery Rate. The discriminant capability of the met-
rics is measured by the t-value, which is proportional to
the average, evaluated across subjects, of the connectivity
metrics difference among the two conditions.
In Fig. 2, we report the results of the t-tests according
to the different metrics, with t-values filtered out by non
significant corrected p-values. These results refer to the
Bbeta band, which is the one with the highest significant
differences.
For comparison’s sake, we considered the t-test accord-
ing to the power spectral estimate, traditional feature in
EEG signals. To this end, we repeated the same anal-
ysis with the averaged P(i,t)

xm [k] across trials and across
frequencies in Bbeta band for each channel m. Results
showed a decrease in the motor area, that is associated to
non significant values, in particular the t-value varies in
a range between -1.74 and 1.38. These findings suggest
that connectivity features are more stable than power
spectrum across subjects in the same frequency band.
Carrying on with the analysis of connectivity estimators,
in Beta band, coherence-based features have higher t-
values compared to imaginary coherence-based ones.
Moreover, in Fig. 2a,c, the increase is localized in
connections involving the controlateral motor areas (ie,
left hemisphere, FC, C, CP electrodes). In the following
we only report the results obtained with coherence and
coherence-based node degree. In particular, we study the
obtained t-values as a function of the number of trials:
we start with all trials (T = 74) and decrease them until
T = 5.

We consider the coherence-based node degree of the
channel with the largest t-value, C3, and compare its
performance with respect to the link with the strongest
coherence, Cp5-F3. In Table I, we notice that the
weighted node degree of the node C3 has a lower t-value

with a great number of trials. Decreasing the number of
observations, it remains higher than the t-value of the
single connection. These results highlight the resilience
capability of coherence-based node degree, which tends
to discriminate mental states even with a reduced number
of trials. In Fig. 3, we finally report a generic progressive
decrease of t-values for the electrodes in left central
hemisphere as a function of the number of trials.

TABLE I: T-values for Coherence-based Node Degree
in C3 and Coherence in between Cp5-F3

Fig. 3: t-values for the coherence-based node degree in
the Bbeta band for central electrodes as a function of the
number of trials.

We report in Table II, for the sake of completeness,
the highest t-values for coherence-based node degree in
other frequency bands.

TABLE II: Maximum t-values for Coherence-based
Node Degree in other Frequency Bands

V. CONCLUSION AND FURTHER WORK

Graph analysis of functional brain networks offers
a compact and powerful tool to characterize the
complex interactions of EEG signals [16]. Here, we
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compare the performance of two popular connectivity
estimators in inferring networks whose topological
local properties could separate motor imagery and
resting states. The obtained results show that spectral
coherence-based node degrees in the Bbeta frequency
band give stronger differences compared to imaginary
coherence ones (Fig. 2). In particular, we report a
coherent connectivity increase around the C3 electrode,
which corresponds to the motor cortex contralateral
to the movement and which is typically involved
during motor related tasks [24], [25]. We speculate
that this result could be in part explained by the fact
that imaginary coherence causes the elimination of
contributions at lag 0, which can instead possibly
carry relevant neurophysiological information [26].
Finally, compared to simple connectivity measures,
coherence-based node degrees are more resilient to
decrease of available observations (trials) needed
to infer the EEG connectivity networks (Table I,
Fig. 3). This in an important feature, as in many
clinical/cognitive applications, such as brain-computer
interfaces [27], [28] the detection of mental states must
be performed on-line to ensure optimal man-machine
interaction. Taken together, these results pave the way
for leveraging node connectivity descriptors for several
applications based on mental states discrimination.
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