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Anastasia Lavrenko†, Florian Römer†‡, Giovanni Del Galdo†∗, and Reiner S. Thomä†∗
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Abstract—In compressed sensing, the choice of the sensing
matrix plays a crucial role: it defines the required hardware
effort and determines the achievable recovery performance.
Recent studies indicate that by optimizing a sensing matrix,
one can potentially improve system performance compared to
random ensembles. In this work, we analyze the sensitivity of
a sensing matrix design to random perturbations, e.g., caused
by hardware imperfections, with respect to the total (average)
matrix coherence. We derive an exact expression for the average
deterioration of the total coherence in the presence of Gaussian
perturbations as a function of the perturbations’ variance and
the sensing matrix itself. We then numerically evaluate the
impact it has on the recovery performance.

Index Terms—compressed sensing, sensing matrix, random
perturbations, average coherence

I. INTRODUCTION

Compressed sensing (CS) is a mathematical framework for

reduced-rate sampling and recovery of sparse or compressible

signals [1], [2]. In its canonical form, it is primarily concerned

with estimating an unknown length-N vector x ∈ R
N×1 from

the following (underdetermined) system of linear equations

y = Ax+ n, (1)

where y ∈ R
M×1 is a length-M vector of observations and

A ∈ R
M×N is an M × N sensing matrix. The length-

M vector n in (1) represents additive noise, whereas x is

assumed to be K-sparse, meaning that at most K � N of

its entries are non-zero. A seminal result in CS states that,

under certain conditions on the sensing matrix A, x can be

recovered from M < N linear observations y [1].

A large body of research is dedicated to studying (1) with

a number of powerful recovery algorithms available in the

literature [3], [4]. Yet, choosing an appropriate sensing matrix

remains a challenge, as a proper A has to ensure the recover-

ability of x and provide certain performance guarantees in the

presence of noise. Traditionally, it is advocated to draw the

sensing matrix from random ensembles such as Gaussian or

Bernoulli [2]. However, recent results indicate that optimizing

a sensing matrix can potentially result in a better recovery

performance [5]–[9]. Thus, in [10]–[12] the authors aim at
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the design that minimizes the so-called matrix coherence.

By measuring the largest correlation between the sensing

matrix’ atoms, smaller matrix coherence yields better worst-

case performance guarantees. A similar family of designs

considers the degree of correlations between all atoms, the

so-called total or average matrix coherence, instead, which

allows impoving the average system performance [5], [6], [9],

[13], [14].

In this contribution, we investigate the sensitivity of a

sensing matrix design to random perturbations in terms of

a change of its total coherence. Note that as pointed out in

[5], the regular matrix coherence often does not represent

the actual behavior of sparse reconstruction algorithms very

well. On the other hand, the total mutual coherence is more

likely to describe the average CS performance as it provides

an average measure of the coherence amoung all dictionary

atoms. In practice however, the sensing matrix entries are

likely to be subject to a certain degree of alteration, e.g., due to

the possible presence of hardware imperfections, phase noise,

quantization errors, etc. The discrepancy between the designed

sensing matrix and its implemented version is typically char-

acterized by a perturbation matrix that is added to A in (1)

[15]. While perturbation analysis in CS context has recently

attracted some research attention, it largely focuses on the

issues of recovery sensitivity to unknown perturbations [15]–

[17] or the design of robust recovery algorithms [18], [19].

Here, we look at this problem from a different perspective:

given a certain (arbitrary) sensing matrix we analyze how its

total coherence changes in the presence of perturbations. We

do so by modeling the perturbations as a random Gaussian

process and computing the average total coherence deteriora-

tion. The derived exact expression shows that the difference

between the total sensing matrix coherence before and after

the perturbation depends on the perturbations’ variance and

the entries of the (unperturbed) sensing matrix itself. We also

numerically demonstrate that such perturbations can cause

significant performance deterioration, especially when they

are unaccounted for. The results of our analysis can be used to

mitigate this effect. For instance, one could adapt the design

strategy in order to account for a certain degree of variation

in a sensing matrix, e.g., by designing A with an additional

constraint on the total coherence.
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II. TOTAL MATRIX COHERENCE

For any given matrix A, we define the total matrix coher-

ence as

εA = ‖ATA− IN‖2F = ‖GA − IN‖2F, (2)

where GB = BTB denotes a Gramian of an arbitrary matrix

B, while ‖ · ‖F is the Frobenius norm and (·)T is the matrix

transpose.

Consider now an M × N perturbation matrix Δ whose

elements are i.i.d. zero-mean Gaussian random variables1

δi,j ∼ N (0, σ2). The perturbed sensing matrix is then

expressed as

AΔ = A+Δ, (3)

whereas its total coherence is given by

εAΔ = ‖GAΔ − IN‖2F (4)

= ‖(A+Δ)T(A+Δ)− IN‖2F
= ‖GA − IN +GΔ +ΔTA+ATΔ‖2F.

For notational convenience, in the following we denote

W = GA − IN and Γ = GΔ+ΔTA+
(
ΔTA

)T
such that

εAΔ
= ‖W + Γ‖2F. (5)

Given (2)–(5), the goal of this work is to evaluate the differ-

ence between εAΔ
and εA. Since Δ is a random matrix, εAΔ

is a random variable and hence we compute the difference as

εΔ = E{εAΔ
} − εA. (6)

Note that that the sensing matrix A is often represented by

a product of another M ×N matrix Φ and some orthogonal

dictionary Ψ ∈ R
N×N , i.e. A = ΦΨ. Assuming that Ψ is

known and taking into account that perturbations will now act

on Φ instead of A, (3) transforms into

AΔ = (Φ+Δ)Ψ = ΦΨ+ΔΨ = A+ Δ̃. (7)

From the point of view of perturbations’ analysis, expression 7

is equivalent to the original formulation (3), but for a possible

change of perturbations’ variance.

III. SENSITIVITY ANALYSIS TO RANDOM PERTURBATIONS

Taking into account that εA is deterministic and known, to

compute εΔ we need to determine the mean value of εAΔ
.

We begin by re-writing E{εAΔ
} as

E{εAΔ} = E{‖W + Γ‖2F} = E{trace(W + Γ)T(W + Γ)}
= trace(WTW ) + 2E{trace(WTΓ)}+ E{trace(ΓTΓ)}
= εA + 2E{trace(WTΓ)}+ E{trace(GΓ)}

= εA + 2

N∑
i=1

E
{
wT

i γi

}
+

N∑
i=1

E
{‖γi‖22

}
, (8)

1We can often model hardware-induced perturbations, such as the ones
caused by phase noise or quantization errors, by a Gaussian process.

where wi,γi denote the ith columns of W and Γ, respec-

tively. Inserting (8) into (6) immediately yields

εΔ = 2

N∑
i=1

E
{
wT

i γi

}
+

N∑
i=1

E
{‖γi‖22

}
. (9)

Note that wi in (8)–(9) is deterministic, while γi is a

random vector with jth element composed of

γi,j = δTi δj + δTi aj + aT
i δj = δTi δj + βi,j , (10)

where βi,j = δTi aj + aT
i δj , while δi, ai denote ith columns

of Δ, A, respectively. Since all δi,j are i.i.d Gaussian random

variables with equal variance, we have that

βi,j ∼ N (0, qα2
i,jσ

2), (11)

where q = 1+ δ[i− j] and α2
i,j = ‖aj‖22 + ‖ai‖22, while δ[n]

indicates the Kronecker delta function. Given (11), we obtain

E{γi,j} = E{δTi δj}+ E{βi,j} = E{δTi δj}, (12)

where δTi δj is the (i, j)th element of ΔTΔ whose mean

value and variance are provided by the following theorem.

Theorem 1. Let Δ be an M × N random matrix
with i.i.d. Gaussian zero-mean elements that have equal
variance σ2 and 1n×m denote an all-one matrix of size n×m.
Then,

E{ΔTΔ} = Mσ2IN and (13)

E{(ΔTΔ)2} = (M(M + 1)IN +M1N×N )σ4, (14)

where (B)n means raising the elements of B to nth power.
Furthermore, denoting by vi,j = var{[ΔTΔ]i,j} the vari-

ance of the (i, j)th element of ΔTΔ, we have that

vi,j = qMσ4, (15)

where q = 1 + δ[i− j].

Proof. Cf. Appendix A.

Applying Theorem 1, we find that E{γi,j} = δ[i− j]Mσ2.

Subsequently,

N∑
i=1

E
{
wT

i γi

}
=

N∑
i=1

N∑
j=1

wi,jE{γi,j} = Mσ2
N∑
i=1

wi,i

= Mtrace(W )σ2 = M
(‖A‖2F −N

)
σ2. (16)

Now consider the second term of eq. (9). Since∑
i E

{‖γi‖22
}
=

∑
i,j E

{
γ2
i,j

}
, we need to compute E{γ2

i,j},

which can be written as

E{γ2
i,j} = E{(δTi δj + βi,j)

2}
= E{β2

i,j}+ E{(δTi δj)2}+ 2E{δTi δjβi,j}. (17)

To find E{γ2
i,j}, we examine each term of (17) independently.

The value of E{β2
i,j} can be found by noticing that

β2
i,j ∼ Gamma(0.5, 2qα2

i,jσ
2),
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where Gamma(k, θ) denotes a Gamma distribution in a

shape–scale parametrization. This yields

E
{
β2
i,j

}
= qα2

i,jσ
2. (18)

The value of the second term E{(δTi δj)2} is provided by

Theorem 1 which states that

E{(δTi δj)2} =

{
M(M + 2)σ4, if i = j
Mσ4, otherwise

. (19)

Finally, the last term of (17) can be written as

E{δTi δjβi,j} = E{δTi δjδTi aj}+ E{δTi δj(ai)
Tδj}

=
M∑

m=1

aj,m

N∑
n=1

E{δi,mδi,n}E{δj,n}︸ ︷︷ ︸
=0

+

M∑
m=1

ai,m

N∑
n=1

E{δj,mδj,n}E{δi,n}︸ ︷︷ ︸
=0

= 0 (20)

Having determined all three terms constituting E{γ2
i,j}, we

can now find
∑

i E
{‖γi‖22

}
as∑

i

E
{‖γi‖22

}
=

∑
i,j

(
qα2

i,jσ
2 + E{(δTi δj)2}

)
= 2(N + 1)‖A‖2Fσ2 +NM (M +N + 1)σ4. (21)

At last, we insert (16) and (21) in (9) and finally obtain

E{εΔ} = 2
(
(M +N + 1)‖A‖2F −NM

)
σ2+

+NM (M +N + 1)σ4. (22)

Expression (22) shows that E{εΔ} has a linear and a

quadratic term with respect to perturbations’ variance σ2.

It also shows that E{εΔ} depends on the entries of the

sensing matrix A via ‖A‖2F as well as the dimensions M,N .

Interestingly, one can notice that for an arbitrary matrix A
with ‖A‖2F < NM

N+M+1 it is possible to obtain a negative

E{εΔ} (meaning on average lower total coherence) by adding

to it Gaussian perturbations with variance

σ2 < 2

(
1

M +N + 1
− ‖A‖2F

MN

)
.

Note however, that this requires that the entries of the sensing

matrix A are scaled in a very particular way. Furthermore, in

the absence of any additional constraints on A, an optimal

sensing matrix in terms of the total coherence is known to

have εAopt = N − M [13], which yields ‖Aopt‖2F = M .

Hence, for a sensing matrix that reaches εAopt we have that

(M +N + 1)‖Aopt‖2F −NM = M(M + 1) > 0,

and, subsequently, E{εΔ} > 0, as expected.

IV. NUMERICAL EVALUATION

In this section, we evaluate the influence of Gaussian

perturbations on the value of the total matrix coherence

numerically. To do so, we first generate a scenario where the

elements of A are drawn from a Gaussian distribution such

that ai,j ∼ N{0, σ2
A}. In Figure 1, we show the empirical

(averaged over 104 realizations of Δ) and the theoretical

(both full, according to expression (22), and the two individual

terms) difference E{εΔ}/εA against the variance ratio σ2
A/σ2

for a single realization of A with N = 150, M = 50. We can

notice that the empirical and theoretical curves coincide, with

the quadratic term dominating for large relative perturbations

(up to σ2 = 2(‖A‖2F/MN − MN/(M + N + 1)), which

corresponds to σ2
A/σ2 ≈ −3 dB in our example) and the

linear term dominating for the low level of perturbations.

-15 -10 -5 0 5 10
10-2

100

102

Fig. 1. Empirical and theoretical relative difference E{εΔ}/εA as
a function of σ2

A/σ2 for a single realization of a Gaussian sensing
matrix with N = 150 and M = 50.

In our next experiment, we change the dimensions N , M
and evaluate the relative difference E{εΔ}/εA for an optimal

(with respect to the total coherence) sensing matrix Aopt with

εAopt
= N − M . We depict the resulting E{εΔ}/εAopt

for

‖Aopt‖2F/E{‖Δ‖2F} = 1/Nσ2 = 0 dB in Figure 2 in a form

of a color plot. We observe that for N > M , increasing N
with a fixed value of M results in the decrease of the relative

difference E{εΔ}/εAopt
, while increasing M with a fixed N

has an opposite effect.

Finally, we examine how E{εΔ}/εAopt
≥ 0 impacts the

recovery performance, as judged by the mean squared er-

ror (MSE) between the true x and recovered x̂ coefficient

vectors. Here, to obtain x̂ from y = AΔx + n we apply

the orthogonal matching purcuit (OMP) algorithm [3]. The

system dimensions are set to N = 150 and M = 30, while

the sparsity order is K = 3. Figure 3 demonstrates normalized

MSE, which shows how much the MSE increases due to

perturbations compared to the optimal case of AΔ = Aopt,

as a function of E{εΔ}/εAopt for an SNR of 15 dB, where

the SNR is defined as E{‖AΔx‖22}/E{‖n‖22}. Note that the

normalized MSE value of 1 means that the MSE provided

by the perturbed sensing matrix AΔ is the same as the one
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Fig. 2. Relative difference E{εΔ}/εAopt as a function of N and M
for ‖Aopt‖2F/E{‖Δ‖2F} = 1/Nσ2 = 0 dB.
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Fig. 3. Normalized MSE as a function of E{εΔ}/εAopt for N =
150, M = 30, K = 3 and an SNR of 15 dB. The normalized MSE
value of 1 means that the MSE provided by the perturbed sensing
matrix AΔ is the same as the one provided by an unperturbed
sensing matrix Aopt.

provided by Aopt. The results are presented for two following

cases: x is recovered knowing i) the full perturbed matrix

AΔ = Aopt + Δ or ii) only Aopt. Note that the former

can happen when the main source of perturbations is of a

deterministic nature, such as quantization errors for instance,

which we only model as random, while the latter is the case

for perturbation causes such as phase noise. In both cases,

we see that in the presence of perturbations the recovery

performance deteriorates; its impact is however noticeably

more severe when the perturbations are unknown.

V. CONCLUSIONS

In this work, we analyzed the sensitivity of the total coher-

ence of the compressed sensing matrix to random Gaussian

perturbations. We derived an exact formula for computing

the average total coherence of the perturbed sensing matrix,

which shows how it deteriorates in the presence of random

perturbations. We then numerically demonstrated the negative

effect it has on the recovery performance. Our results support

the intuition that for reliable performance the presence of

random perturbations should be accounted for either during

the sensing matrix design or/and the signal recovery.

APPENDIX A. PROOF OF THEOREM 1

Denote by δi,j and gp,q the elements of Δ and ΔTΔ,

respectively. To prove Theorem 1, we need to derive the mean

values of gp,q , g2p,q and the variance of gp,q for all p, q =
1, 2, . . . , N .

Consider first gp,q . For p 	= q we easily obtain

E{gp,q} = E

{
M∑

m=1

δp,mδq,m

}
=

M∑
m=1

E{δp,m}E{δq,m} = 0

due to the independence of δp,m and δq,m. When p = q we

have that gp,p = ‖δp‖22 which means that gp,p/σ
2 ∼ χ2(M),

where χ2(k) denotes a chi-square distribution with k degrees

of freedom. Hence, gp,p ∼ σ2χ2(M) = Gamma(M2 , 2σ2),
where Gamma(k, θ) is the Gamma distribution in a shape–

scale parametrization. Therefore,

E{gp,p} =
M

2
2σ2 = Mσ2 (23)

for any p = 1, 2, . . . , N . The variance of gp,q can be

calculated as follows. For p = q we immediately obtain

var{gp,p} = M
2 4σ4 = 2Mσ4. When p 	= q we have that

gp,q =
∑M

m=1 δp,mδq,m. Let us represent δp,mδq,m as

δp,mδq,m =
1

4
(δp,m + δq,m)2 − 1

4
(δp,m − δq,m)2. (24)

Since all δp,m, δq,m are i.i.d. zero-mean normal random

variables with equal variance σ2, we have that δp,m ± δq,m
is a zero-mean normal random variable with variance 2σ2.

Then,

δp,mδq,m =
1

2
σ2(Q−R), (25)

where Q,R ∼ χ2(1). Since δp,m, δq,m have the same

variance, Q and R are independent and hence

var{δp,mδq,m} =
1

4
4σ4 = σ4, and (26)

var{gp,q} = Mσ4. (27)

For E{g2p,q} we can now simply write that

E{g2p,q} = var{gp,q}+ E2{gp,q}
=

{
2Mσ4 + (Mσ2)2, if p = q
Mσ4 + 0, otherwise

. (28)
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