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Abstract—This paper considers the problem of super-
resolution (SR) image reconstruction from a set of totally aliased
low resolution (LR) images with different unknown sub-pixel
offsets. By assuming the translational motion model, a linear
compact representation between the LR image spectrums and
SR image spectrum, based on multi-coset sampling is provided.
Based on this model, we formulate the joint estimation of the
unknown shifts and SR image spectrum as a dictionary learning
problem and alternating minimization approach is employed
to solve this joint estimation. Two different approaches for
obtaining the SR image; one based on estimated shifts and
another based on estimate SR spectrum are described. The
significant advantage of the proposed approach is the smaller
matrix sizes to be handled during the computation; typically on
the order of number of images and enhancement factors, and is
completely independent on the actual dimensions of LR and SR
images, hence requiring significantly lesser resources than the
current state of the art approaches. Brief simulation results are
also provided to demonstrate the efficacy of this approach.

I. INTRODUCTION

Aliasing, is a well known phenomenon caused due to
sampling of signals below the Nyquist sampling rate and
is usually considered as nuisance. However, aliased signals
contains information about high frequency components and
reconstructing the signal by resolving these high frequency
components from multiple, slightly different aliased signals
(also referred as low resolution (LR) signal) has many ap-
plications. One such key application being the image super-
resolution (SR) which is the topic considered in this paper.
Thus, a SR image is not just merely an upsampled and
interpolated image, but it also contains additional details due
to the incorporation of high frequency information.

Image SR finds applications in many areas such as in
satellite and aerial imaging, medical imaging etc., due to
which it is a well researched area and plethora of algorithms
exist. Interested readers may refer to [1] for a comprehensive
overview of the existing SR techniques and their applications.
Essentially, the SR process comprises of two main steps:
i) Registration and ii) Restoration. Registration, which is
a process of transforming the images onto a common co-
ordinate system at sub-pixel precision, forms the crucial step.
This is because the performance of the subsequent restoration
step, which is an ill-posed problem, heavily depends upon
the registration accuracy. Hence, wide range of strategies
exist for image registration in both the spatial and frequency
domains. A summary of these registration techniques can
be found in the survey articles [2]. Alternatively, iterative
methods for joint registration and restoration have also been
proposed such as in [3], and is shown to perform better than
the disjoint two-stage SR methods; however at the cost of
increased computation.

Of-late there has been a increasing trend of removing the
front end anti-aliasing filter in cameras to increase the image
sharpness (refer [4] for more details). Removal of this filter

causes total aliasing of the LR image spectrum. Although, as
outlined earlier, wide range of techniques exists, most of them
considers aliasing as a background noise and hence the SR
reconstruction performance is quiet low for this case of total
aliasing. Hence, to improve the performance under aliasing,
[5], [6] proposed SR techniques by including aliasing in the
signal model. Whereas, [5] addressed a scenario when an
aliasing-free part of the spectrum is available, [6] considered
a more generic scenario when the entire signal is totally
aliased. While [6] can handle total aliasing, as shall be shown
later in Section II-B, this technique is computationally highly
intensive as the signal is processed by vectorizing the LR
images which leads to larger matrix dimensions to be handled.

In this paper, we propose a computationally efficient
method for obtaining a SR image from multiple LR images
that have slightly different sub-pixel offsets and which is
capable of SR image reconstruction under total aliasing.
The proposed approach is essentially based on multi-coset
sampling framework [7], which facilitates band-wise aliasing
representation in contrast to bin-wise aliasing such as in
[6], thereby enabling a compact linear relationship between
multiple LR images and the SR image. The relationship
matrix has a Vandermonde structure and is dependent on
the unknown shifts. Now, since both the offsets and the
SR image are unknown, by making use of sparsity in the
frequency spectrum of most of the natural images, we frame
the registration step as dictionary learning problem [8] and
propose to solve it using alternative minimization framework
[9]. While in the dictionary updation step, we only update the
parameters (here shifts) using the steepest descent iterations,
in the signal estimation step we employ MUlitple Signal
Classification (MUSIC) algorithm [10] to estimate the sparse
spectrum. We describe two methods for obtaining the desired
SR image in the subsequent restoration step; one based on
the estimated sub-pixel offsets and another based on the
estimated sparse frequency spectrum. Heuristic approaches
for obtaining faster convergence and to improve the sub-pixel
estimation accuracy are also provided. The main advantage of
the proposed approach is the huge reduction in the dimension
of the matrices; unlike [5], [6], the matrix dimensions are
independent on the size of the LR and SR images and depends
only on the number of LR images and enhancement factor.
Thus, even with nominal computational resources one can
obtain larger dimensional SR image. Brief simulation results
are also presented to demonstrate the efficacy of the SR image
reconstruction from totally aliased set of LR images and to
study the sub-pixel offset estimation performance.

II. PRELIMINARIES

In this section, we first describe the LR image model
considered in this paper. This is then followed by a brief
outline of the existing techniques for SR and also discuss their
limitations, thus providing a motivation for the alternative
approach presented in this paper.
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A. LR Image Model and Problem Formulation

We restrict the motion model to translational shift model,
such as in [6], [11], [12]. This kind of motion model although
is applicable in scenarios where burst of images are taken in a
short interval of time with small motion between the images,
but is more suitable when a camera array is employed to
capture LR images which is becoming more popular of-late
[13], [14].

Now, the kth (1 ≤ k ≤ K) LR image gk(n) of size
Nx ×Ny can be modeled as

gk(n) = h(Ln + ck) + η(n) (1)

where h(t), t ∈ R2 denotes the 2-D image scene , { n =
[nx, ny]T | n ∈ Z2, 0 ≤ nx ≤ Nx − 1, 0 ≤ ny ≤ Ny −

1}, ck = [cxk, cyk]T . L =

(
Lx 0
0 Ly

)
, Lx, Ly denotes the

enhancement factors along the x-axis and y-axis respectively
(the factors Lx, Ly are also referred to as decimation factors
in the sampling literature). cxk and cyk which resides in the
range 0 < cxk < Lx, 0 < cyk < Ly denotes the relative
translational shifts of the kth LR image along x-axis and y-
axis respectively and η(n) denotes the additive white noise.
Here, we assume the first image as the reference image and
hence cxk = cyk = 0 for k = 1. For the sake of simplicity, we
further make an assumption that the shifts are distinct and it
is important to note that it resides in the sub-pixel range with
respect to the LR image i.e., cθk/Lθ < 1, for θ ∈ {x, y}. We
refer to the ratio cθk/Lθ as sub-pixel offset. Additionally, we
make an assumption that the enhancement factor can exceed
the number of LR images i.e., K < LxLy .

With the above mentioned LR image model, the aim here
is to estimate the SR image h(m), {m = [mx,my]T | 0 <
mx < Lxnx, 0 < my < Lyny} from the K known LR
images gk(n) having unknown shifts ck. Observe that in order
to properly reconstruct the SR image, it is important and es-
sential to estimate shifts with relatively good accuracy. It is to
be noted from (1) that not only LR images are aliased but also
due to the absence of anti-aliasing filter, the entire LR image
spectrum is totally aliased. It is thus necessary to estimate
the shifts which are in the sub-pixel range (with respect to
the LR image scale) from such totally aliased spectrum. In
the following section we briefly describe the existing state
of the art techniques for SR image reconstruction for the
aforementioned LR image model and also briefly outline their
limitations.

B. Existing techniques

It is well known that the translation in time/space corre-
sponds to simple linear phase shift in the frequency domain.
While in the absence of aliasing, this relative phase shift can
easily and accurately be measured, in the presence of aliasing
the estimation will be erroneous. Hence, many registration
methods such as Normalized Cross Power Spectrum (NCPS)
methods (see [12] and the references there-in) results in
erroneous estimation when employed for totally aliased LR
images. [5] suggested a simple scheme of considering only
the alias-free band for estimation and neglecting the other
regions that are affected by aliasing. However, for the case
when the entire band is affected, as in the present scenario,
the same authors in [6] suggested a scheme by taking
aliasing into the image model. A subspace based algorithm
was also described by concatenating all the vectorized LR

images. Although this method works under total aliasing, the
computational complexity is enormously high which is also
observed by the authors (see [6, Section VII])). For example,
the dimensions of the matrix to be handled will be in the
order of NxNy × LxNxLyNy , which one can notice, that
it is very large even for a nominal LR and SR image sizes.
Furthermore, due to the iterative nature of the algorithm, these
large dimensional matrices must be handled at each iteration.

Owing to these limitations, in the next section we present
an alternative computationally efficient approach. Unlike [6],
the dimensions of the matrices to be handled depends only
on K and LxLy and is independent of the sizes of the LR
and SR images.

III. PROPOSED APPROACH

In this section, we first provide a brief representation
of LR image model of (1) in the frequency domain by
making certain assumptions on the offsets. Following this,
methods for the two key steps of SR, namely registration
and restoration are described. At the end of this section,
we outline our complete SR image algorithm process using
the above described individual blocks. While in this section,
the algorithms are described, in the next section we outline
heuristic approaches for further reducing the computations
and also briefly discuss methods for choosing parameters for
guaranteed reconstruction and for performance improvement.

A. Frequency domain representation

The shifts which reside in the range 0 < cθk < Lθ, can be
expressed as cθk = round(cθk)+∆cθk. Suppose if we neglect
∆cθk and make an approximation that cθk ≈ round(cθk)
i.e., shifts rounded off to closest integer, then the LR images
can be seen as obtained via the multi-coset sampling [7] of
the SR image and can easily be represented in the compact
framework as [7],

G(f) =
1

LxLy
∆(f)A︸ ︷︷ ︸

A∆(f)

s(f) (2)

where G(f) , [G1(f), G2(f), ..., GK(f)], for any 1 ≤ k ≤ K,
Gk(f) denotes the 2-D Fourier transform of the kth LR image
and f ∈ [0, 1]2. The kth row, qth column element of matrix
A which is of size K × LxLy , can be expressed as

[A]k,q = ej2πcTk L−1λq (3)

where λq denotes the qth vector of the set Λ , {0, 1, ..., Lx−
1} × {0, 1, ..., Ly − 1} (here × denotes the Cartesian
product). ∆(f) is a diagonal matrix with diagonal ele-
ments {e−j2πcT1 f, e−j2πcT2 f, ..., e−j2πcTK f} and s(f) , [H(f +
L−1λ1), H(f + L−1λ2), ...,H(f + L−1λQ)]T , where Q =
|Λ| = LxLy . H(f + L−1λk) for f ∈ [0, 1]2, represents a
subband of H(f) of dimension Nx × Ny beginning from

the position
(
Nx 0
0 Ny

)
λk, where H(f) denotes the 2-

D Fourier transform of the the SR image h(m) and is of size
NxLx×NyLy .1 Thus, LR image spectrum Gk(f) can be seen
as weighted superposition of the subbands given by rows of
s(f), with weights being a function of shifts. We shall make
use of this property of different weights to obtain the SR
image by overcoming aliasing.

1Interested reader may refer to [7, Fig. 3] for a pictorial representation of
the s(f) for a 1-D signal.
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It is important to notice that the dimension of A is
K×LxLy (i.e., the number of LR images × number of sub-
bands) and unlike [6], the size of the matrix is independent
of the dimensions of the LR and HR images. Now, contrary
to the standard multi-coset sampling and reconstruction of [7]
where the shifts are known, here both s(f) and shifts {ck}Kk=1
are unknown. Hence, in the next section, we propose an iter-
ative algorithm based on alternating minimization technique
to estimate both the matrix A∆(f) as well as s(f).

B. Registration and restoration algorithm

The task of the registration algorithm is to essentially
estimate the shifts, while the restoration algorithm is to
reconstruct the final SR image of a predefined dimension by
making use of these estimated shifts. The following sections
describes the details of these methods.

1) Registration: The registration step essentially estimates
Â∆(f) and ŝ(f) such that the following function is minimized:

min{ck}Kk=1 ,̂s(f)‖G(f)− 1

LxLy
Â∆(f)ŝ(f)‖2F . (4)

Now, recall from Section II that we have made an assumption
that K < LxLy , and hence under this scenario, (2) becomes
an under-determined system of equations. To handle this
scenario, we make use of the inherent frequency domain
sparsity of most of the natural images. In other words, for
most of the natural images, several subbands i.e., rows of
s(f) will have insignificant energy and thus can be assumed
to be approximately sparse. We enforce this sparsity in our
estimation algorithm and then visualize estimating A∆(f) as a
dictionary learning problem [8], [15]. Alternating minimiza-
tion technique [9] is then employed to jointly estimate the
dictionary or the matrix Â∆(f) and sparse ŝ(f) as outlined
below.
a) Updating dictionary: Unlike the conventional dictionary
learning problem described in [8], [15], since the structure
of the dictionary or matrix A∆(f) is clearly defined, similar
to [16] we enforce this structure. In other words, we only
update the parameters {ck}Kk=1 iteratively. At the beginning
of the iteration, we initialize the shifts obtained using some
simpler method such as NCPS method and by considering
only the lower frequencies, where the effect of aliasing is less
compared to other regions. We then use the steepest descent
method for updating the parameters. Now, the mean squared
error (MSE) at the end of the ith steepest descent iteration
can be expressed as

F (A(i)
∆ ) =

1

NxNy

∑
f

‖G(f)− 1

LxLy
Â

(i)

∆ (f)ŝ(t−1)(f)‖22 (5)

where Â
(i)

∆ (f) denotes the estimated dictionary at the end of
the ith iteration and ŝ(t−1)(f) denotes the estimated signal
at the (t − 1)th alternating minimization iteration.2 Using
F (A(i)

∆ ), the shifts at the (i+ 1)th iteration are updated as

c
(i+1)
θk ← c

(i)
θk − µ

∂F (A(i)
∆ )

∂cθk
(6)

where 1 ≤ k ≤ K and µ denotes the step size. The details of
the computation of the partial derivatives are not given here

2While the superscipt i indicates the ith iteration of the steepest descent
algorithm, t denotes the tth iteration of the alternative minimization algo-
rithm.

due to lack of space. However, computation is relatively easy
since only the kth row of A∆(f) depends upon cθk. It is impor-
tant to notice that unlike in the case of [16], due to diagonal
matrix ∆(f), the dictionary is different for each frequency bin
and this must be taken into consideration while computing
the gradient. With fixed ŝ(t−1)(f), the iterations are continued
till convergence i.e., till ‖F (A(i+1)

∆ ) − F (A(i)
∆ )‖2 < εs. At

the end of this step, the updated dictionary Â
(t)

∆ (f) at the tth
alternating minimization iteration is formed by knowing the
parameters {ĉ(t)

k }Kk=1.
b) Estimation of ŝ(t)(f): It is easy to observe that with the as-
sumption of sparsity on s(f) and an estimate of the dictionary
A(t)

∆ (f) available, (2) now reduces to sparse signal estimation
from multi-coset sampling which is considered in [7]. While
we employ steps similar to [7], during the implementation we
adopt MUSIC algorithm [10], which is an efficient and most
commonly used algorithm in array processing. The covariance
matrix at the tth iteration is formed as

R(t) =
∑

f

(∆̂(t)(f))HG(f)(G(f))H∆̂(t)(f). (7)

The entire vector space of dimension K is divided into signal
space Λs of dimension αs that is spanned by the singular
vectors of R(t) corresponding to αs significant singular values
and the other orthogonal noise subspace Λn spanned by the
remaining K − αs singular vectors. The supports i.e., the
columns of Â

(t)
(f) corresponding to the most significant

αs rows of ŝ(f) is estimated by projecting the atoms (i.e.,
columns) of Â

(t)
(f) onto the noise subspace Λn and choosing

αs columns corresponding to lower αs projected values.
Subsequently, upon knowing the supports, a least square
solution is taken and ŝ(t)(f) at the tth iteration is estimated.
Notice here that αs can also be interpreted as the number of
significant aliasing subbands.

At the end of this tth alternating minimization iteration,
MSEg , where MSEg , 1/(NxNy)

∑
f ‖Ĝ

(t)
(f) − G(f)‖22,

Ĝ
(t)

(f) = 1/(LxLy)Â
(t)

∆ (f)ŝ(t)(f) is computed and the pro-
cess is repeated till for some small threshold say εg , MSEg <
εg . Now, at the end of this registration step, due to integer
approximation (see beginning of Section III-A) we will obtain
an estimate of the shifts {ĉθk}Kk=1 which are integers in the
range 0 < ĉθk < Lθ. Later in Section IV-B we briefly discuss
a method for obtaining more accurate estimates of the shifts
by reducing the approximation error.

2) Restoration: By using the outcomes of the aforemen-
tioned registration step, one can think of two methods using
which the final desired SR image can be obtained.
a) From ŝ(f): Recall from the above Section III-A that rows
of ŝ(f) provides sub-bands of the SR image. By properly
arranging ŝ(f), the SR image spectrum can be obtained and
by taking inverse Fourier transform one can get the desired
SR image. However, an additional step of resizing to the pre-
defined desired size might be necessary, since the factors Lx
and Ly would be adjusted to satisfy the conditions that are
stated in Section IV-B.
b) Interpolation: The other alternative method of restoration is
by using non-uniform interpolation. From the previous step,
an estimate of the sub-pixel offsets {ĉθk/Lθ}Kk=1 will be
available. A non-uniform bi-cubic interpolation (as employed
in [12], [5], [6]) can be used by placing the LR images at
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Form G(f) by
transforming to frequency

domain

Estimate ŝ(f)
using MUSIC

Compute Ĝ(f) and
compute MSEg =∑

f ‖G(f)− Ĝ(f)‖22

Initialize
{c(0)
k }Kk=1 and form

dictionary A(0)
∆ (f)

Is MSEg < εg

No

Yes
Restoration

SR image

Update {ĉ(t)
k }Kk=1

and form dictionary Â
(t)

∆ (f)

Alternating minimization

Choose Lpx, L
p
y

LR images

Fig. 1. Flow diagram of the proposed approach. The enhancement factors Lx and Ly are chosen based on the required precision of the offsets. Alternate
minimization technique is then employed to estimate the offsets and ŝ(f), finally using these estimated quantities an SR image is reconstructed in the restoration
step.

appropriate positions using the sub-pixel offsets on the HR
grid of a desired resolution and can get the desired SR image.

C. SR image reconstruction: Summary

Fig. 1 depicts the proposed SR image reconstruction
process from a set of LR images. The proposed scheme can
be divided into following three main steps.
1) Initialization: In this step, G(f) is formed by taking the 2-
D FFT of the LR images. The factors Lx and Ly is decided
based on the conditions that are stated in Section IV-B. By
employing an algorithm such as NCPS method, obtain an
initial approximate estimate of the shifts {c(0)

k }Kk=1.
2) Registration: Alternating minimization technique is em-
ployed to jointly estimate the unknowns Â∆(f) as well as
ŝ(f).
3) Restoration: Upon knowing ŝ(f) and sub-pixel offsets
{ĉθk/Lθ}Kk=1 from the previous registration step, either of
the aforementioned methods can be used for obtaining the
desired SR image.

IV. HEURISTICS AND CHOICE OF Lx, Ly

A. Heuristic approach

Similar to any realization of steepest descent method,
the performance usually depends upon the factors such as
step size i.e., µ, initialization i.e., {c(0)

k }Kk=1 etc. Recall from
Section III-A that we have made an approximation of shifts to
the closest integer for (2) to hold. Hence instead of updating
the shifts in smaller increments using (6), we can update to
the neighboring integer depending upon the direction of the
gradient. Formally, we update the shifts as shown below

c
(i+1)
θk ←


c
(i)
θk − sign(∂F (A∆)

∂cθk
) 0 < c

(i)
θk < Lθ,

and |(∂F (A∆)
∂cθk

)| > εh

c
(i)
θk Otherwise

(8)

where sign(β) = +1 if β ≥ 0, else it is −1. The condition
|(∂F (A∆)

∂cθk
)| > εh ensures that the blind updation does not hap-

pen even when the gradient value is insignificant. In addition
to aiding in faster convergence, this heuristic technique will
also help in tolerating more initialization error and facilitates
reaching towards global minimum.

Now, observe from (5) that F (A∆) comprises of NxNy
summations and gradient must be computed separately for
each factor since the dictionary is different for each factor.
However, due to sparse nature of the frequency spectrum
of images, only few frequency bins which have significant
energy can be considered, while neglecting the remaining
ones. These significant bins can be chosen by putting a
threshold on the spectrum of LR images Gk(f). Thus, by using
the above updation rule (8) and choosing only significant bins,
one can not only achieve faster convergence, but also can
obtain a huge savings in computation.

B. Choice of Lx, Ly

The following proposition provides the conditions on
Lx,Ly and αs to obtain a unique SR image.

Proposition 4.1: A unique SR image reconstruction with
the proposed approach can be obtained if and only if
i) Lx and Ly are coprime, i.e., GCD(Lx, Ly) = 1
ii) αs < K.

Due to lack of space, the proof of the above assertion is
skipped. Recall from Section III-B1 that αs denotes the di-
mension of the signal subspace, which can also be interpreted
as the number of significant energy aliased subbands. The
second condition implies that for the given K LR images,
there is hope of reconstruction only when the number of
aliased subbands (i.e., each row of s(f)) having significant
energy does not exceed K. It can easily be noticed that
Lx and Ly has a direct influence on αs. The higher these
factors, higher is the αs due to more aliasing bands. On
the other hand, also recall that 0 < cθk < Lθ, and (2)
holds only when {cθk}Kk=1 are integers i.e., at the end of
the registration step, if proper convergence is attained, then
we will obtain the sub-pixel shift, {round(cθk)/Lθ}Kk=1. By
expressing cθk = round(cθk)+∆cθk, we see that the sub-pixel
offset error will be ∆cθk/Lθ. Now suppose if we increase the
factor Lθ by some factor say β to βLθ, then at the end of the
convergence, we will obtain an appropriately scaled subpixel
shift i.e., {round(βcθk)/(βLθ)}Kk=1. It is easy to observe
that |round(βcθk)/(βLθ) - (round(cθk)/Lθ| ≤ |∆cθk/Lθ|.
Thus, the factors Lx and Ly must be chosen suitably to not
only satisfy the conditions stated above but they must also
be as large as possible in order to have better estimate of
the offsets for the given K LR images. A direct approach
to optimally choose them is to include these factors as
variables and have an additional step in the above alternating
minimization iteration. However, this approach increases the
computational complexity. Hence, a simple approach is to
first use an approximate method such as NCPS to obtain
the sub-pixel offsets i.e., ratios {c(0)

θk /Lθ}Kk=1 for some Lθ.
Subsequently, for different choices of Lx and Ly , estimate
their corresponding {round(cθk)}Kk=1 and form the covariance
matrix using (7). By observing the eigenvalues for each of
the choice of Lx and Ly , choose the factors Lpx and Lpy ,
which satisfies the above stated conditions and is larger
among the choices. Although this method may not yield an
optimal value, in practice we have observed that the choice
obtained using this heuristic approach will be closer to the
optimal value. It is important to observe that larger K admits
larger values of Lx and Ly thereby leading to more accurate
estimates of offsets, which is along the expected lines. The
registration process is then continued as described earlier
using these larger choices of Lpx and Lpy and subsequently
in the restoration stage, SR image of desired dimension can
be obtained as described in Section III-B2.
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V. SIMULATION RESULTS

Simulations were performed by fixing the number of
LR image to K = 16. These LR images were generated
by sampling h(t) image which is subjected to translation
motion with different shifts and without using any anti-
aliasing filter. NCPS method was first employed to obtain an
initial offset estimation, and subsequently registration using
alternating minimization and restoration using non-uniform
bi-cubic interpolation was performed as described in Section
III. Fig. 2(a) and 2(b) shows an example of the of one of the
LR image of size 64×64 and the SR image of size 320×320
(enhancement factor of 5× 5) respectively with the proposed
approach. A higher quality SR image (in particular observe
the disc at the bottom left corner) can clearly be noticed from
the figure despite total aliasing.

In the next simulation, we varied the factors Lx and Ly
to study its effect on registration accuracy. Table I captures
the results for different choices of enhancement factors. For
the sake of comparison the result obtained using the NCPS
method is also provided. The NCPS method estimates the
translation by using the spectrum of LR images. From the
table one can observe that as these factors increases, the
registration accuracy improves which clearly corroborates the
description provided in Section IV-B. It is important to note
that for the choice of the parameters chosen here, enormous
resources are required to apply the method of [6]; typically the
matrix will be in the order of 4096×LxLy4096. In contrast,
the size of matrices to be handled with the present approach
is only in the order of 16×LxLy and furthermore, we found
the convergence to be achieved with less than 20 alternating
minimization iterations in most cases, thus demonstrating the
efficacy of this approach.

(a) One of the 64 × 64 LR image (b) 320 × 320, SR image

Fig. 2. Example of an LR image and SR image resolved by a factor of
5× 5.

NCPS Lx = 5, Ly = 6 Lx = 10, Ly = 11 Lx = 15, Ly = 16
0.563 0.0620 0.0086 0.0024

TABLE I. AVERAGE RMSE (IN PIXELS) COMPARISON WITH NCPS
METHOD AND FOR DIFFERENT CHOICES OF Lx AND Ly .

VI. CONCLUSION

A computationally efficient approach for obtaining an SR
image from a set of LR images, when the entire spectrum
is affected by aliasing, is addressed in this paper. Multi-
coset sampling based technique is employed to establish the
relationship between the LR image spectrums and the SR
image spectrum. This technique facilitates band-wise aliasing
in contrast to bin-wise aliasing of the existing approaches,
thereby providing a huge reduction in the the size of the
relationship matrix on the order of number of LR images
and number of sub-bands, and further making it independent
of the dimensions of the LR and SR images. Alternating

minimization framework is employed to jointly estimate sub-
pixel offsets and the sparse sub-bands of SR image spectrum
using the steepest-descent technique and MUSIC algorithm,
respectively. Additionally, heuristic techniques are described
towards reaching global minimum with fewer iterations and to
improve the sub-pixel offset estimation accuracy; These are
verified through simulation results. The proposed approach
can easily and efficiently be deployed on mobile platforms
which have limited resources and still can obtain an SR image
in almost real-time.
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