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Abstract—Distributed Quantizer Linear Coding (DQLC) is a
joint source-channel coding scheme that encodes and transmits
distributed Gaussian sources over a MAC under severe delay
constraints, providing significant gains when compared to un-
coded transmissions. DQLC, however, relies on the appropriate
optimization of its parameters depending on source correlation,
channel state and noise variance. In this work, we propose
a parameter optimization strategy that relies on the lattice
structure of the mapping, reduces the number of parameters
to estimate, and exhibits lower computational complexity.

I. INTRODUCTION

Fading Multiple Access Channel (MAC) is a channel model
where several users transmit their individual information to
a centralized receiver over the same wireless channel. Most
works in the literature consider the digital encoding of the
information and are designed under the assumption of source-
channel separation. However, this approach is not optimal
when users transmit correlated information and do not coop-
erate to encode their data [1]-[3]. In such cases, it is more
appropriate to jointly consider the operations of source and
channel coding and thus directly encode the source symbols
into channel symbols by means of suitable mapping functions.

For several MAC scenarios, plain uncoded transmission, i.e.
users simply send scaled versions of their source symbols,
has been shown to provide optimal performance [2], [4].
This is not the case when transmitting correlated information
over an orthogonal MAC with zero-delay where the optimal
mappings resemble modulo functions [5]. Parametric modulo-
like mappings have also been studied in [6], [7] and have
been shown to provide good performance since the source
correlation is efficiently exploited at decoding.

For non-orthogonal MAC, the optimal zero-delay mappings
for two correlated users consist of a combination of uncoded
transmission and a quantization-like scheme [8]. A hybrid
discrete-analog scheme referred to as Scalar Quantizer Linear
Coding (SQLC) based on a scalar quantizer and a linear con-
tinuous mapping was also proposed in [9] for the transmission
of bivariate Gaussian sources over the Gaussian MAC. Finally,
[9] extends these results to an arbitrary number of correlated
users over the Gaussian MAC. The proposed mapping, called
Distributed Quantizer Linear Coding (DQLC), outperforms the
uncoded scheme for high Signal-to-Noise Ratios (SNRs).

In this work, we consider an arbitrary number of users trans-
mit correlated information over a fading MAC. We present a
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transmission scheme based on the DQLC mapping, where the
decoding operation is optimized to provide Minimum Mean
Squared Error (MMSE) estimates with affordable complexity,
even for a large number of users. In addition, we propose
an alternative strategy for the parameter optimization with
respect to [9] that allows optimizing the mapping for an
arbitrary number of users and source correlation. In summary,
the contributions of this work are:

e The extension of DQLC mappings to MACs with fading
and an arbitrary number of users while proposing a
decoding strategy that provides MMSE estimates of the
source symbols with affordable complexity.

o A parameter optimization strategy with a practical com-
putational cost. Such strategy relies on decoupling the
DQLC parameters and searches for the optimal user
power allocations. This approach does not require the
exact computation of the expected DQLC distortion (see

[9D.

II. SYSTEM MODEL

Let us consider the transmission of correlated information
over a fading MAC with K single-antenna users antenna and
a single-antenna central node. Users are assumed to send
discrete-time continuous-amplitude real-valued symbols which
follow a zero-mean multivariate Gaussian distribution with
covariance matrix Cg. We assume that [C) , = 1 Vk, while
[Cslij, © # j represents the correlation between the source
symbols of the i-th and j-th users.

Source symbols are individually encoded at each user with
an appropriate mapping function and then transmitted over the
MAC. Hence, the received signal is

y =h"f(s) +n, (1)

where h € RE*1 is the fading MAC channel response, n ~
N(0,02) is the additive white Gaussian noise, and f(s) =
[fi(s1),- .., fx(sx)]" is an element-wise encoding function
satisfying the individual power constraints E [| fi(sy)|?]
T}.. Without loss of generality we assume |hq| > |ha| > ...
|h k|, since users can be arbitrarily ordered.

We assume DQLC mappings are used to encode the source
symbols [9]. In general, a subgroup of users transmit a
quantized version of their information while the remaining
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Fig. 1. Example of quantized mapping in DQLC with Ay = 1. The source
symbol s = 1.7 is mapped to the interval corresponding to I = —2.

users send a scaled version of their symbols. Therefore, the
mapping function is

Sk 1 1 <k<
fwy = { B3]t 1sheR
Sk K, <kE<K

where oy, is a gain factor that ensures the encoding operation
satisfies the power constraints, Ay, is the quantization step for
the k-th user, and K is the number of users that quantize
their information. For the quantized users, the factor ay can

\/ mi, Yk, 1<k < K, with

be computed as oy, < AL

DA =23 (1+1/2 (Q(Au(l+ 1) - Q(AW)), ()
1=0

where Q(-) is the error function. For the uncoded users, ay <
VTi, Vk, K, +1 < k < K. Other works propose clipping
functions to improve performance at low correlations [9], but
we will not consider them to simplify the model.

The non-linear mapping function for the k-th quantized user
is conveniently rewritten using the following auxiliary function

) ook (lk + %) Sk € [Agly, Al + 1))
fui(s8) = { 0 otherwise

where [, is an integer-valued variable which indexes the
quantizer interval where the source symbol sy, falls into. Fig. 1
shows a mapping example for a quantized user with parameter
Aj = 1. As observed, each quantizer interval is indexed for
its corresponding [ value such that the above function is only
defined for the [;, value corresponding to the interval where
the user symbol falls into.

From (4), and also considering the uncoded users, we define
Fi(s) = [fi(s1)s ooy i, (SK,)s k415K 115 -+ sk
which can also be expressed as

fils) ={ A

with q; = [ll + %,...JKQ + %,SKqul,‘..,sK]T, A =
diag {ov,...,ak}, and 1 = [ly,...,lg,]" the vector that
stacks the interval indexes for the K, quantized users. Note
that, in general, each vector 1 comprises a feasible combination

G

CES [al, bl]
otherwise

. ®)
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of K, interval indexes. The interval limits are given by
a; = [Alll, R 7AK<1qu7 —00, ..., —OO]T and b; = [Al(ll +
1),...,Ak, (I, +1),00,...,00]". Finally, the mapping func-
tion corresponds to the sum of all functions f;, i.e.

f(s)= > fils). 6)
1ezXaq
At the receiver, an estimate of the source symbols is
determined from the received signal, y. In this work, we
seek to minimize the average Mean Squared Error (MSE)
between the source and the estimated symbols. In this context,
the optimal decoding is the MMSE estimator. However, the
mapping function is non-linear and the calculation of the
MMSE estimates requires to compute the resulting integrals
numerically, which significantly increases the computational
cost even for a small number of users. In the next section, we
use sphere decoding to reduce the computational cost with the
help of the alternative definition of DQLC mapping in (6).
Note that this system model considers real-valued variables
but can be easily extended to the complex-valued case by
treating the real and imaginary parts separately [7].

III. MMSE SPHERE DECODER

At the receiver, the MMSE estimates are computed as

Smmse = E [s|ly] = m -

Using the alternative definition for the DQLC mapping in
(6), the conditional probability is

1
o (gl WIGE) ®

=3 7 (yh"Ag 0% abr). ©)

1cz2¥q

p(yls) =

where T'(s, u, C, a, b) represents a truncated Gaussian distri-
bution with mean g and covariance matrix C, in the interval
[a, b]. Hence, the posterior probability is

p(sly) o< p(yls)p(s)

x > T (yh" Aq 0% aubr) pls),
1ezXq
o Y Tils),
lezXaq
where T;(s) = T'(s, 81,Ce,ay,by), 8 is the linear MMSE
estimator for the uncoded users assuming that the quantized

users are correctly decoded, and C. is its corresponding error
covariance matrix, i.e.

(10)

- GTh (y - hTqul)
(11)

1 (1
s =—5 <2G§hhTGu + Csl>
Un Jn

1 —1
C. = (UQthhTGu + C;1> , (12)

n
,ag,,0,...,0} and G, =
SOK (-

where G, = diag{al,...
diag{O,...,O,aKq+1,...
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The posterior probability (10) can be used to obtain MMSE
or Maximum A Posteriori (MAP) estimates of the received
symbols after DQLC encoding, but the number of feasible
vectors [ is arbitrarily large. Hence, it is important to find a
set of feasible vectors I as small as possible.

An ideal approach to determine the relevant vectors I would
be to have a closed-form expression of the maximum of
the truncated Gaussian as a function of I. However, this is
not possible, and we circumvent this limitation by evaluating
the truncated Gaussian functions in (10) in the middle point
of the intervals defined for the quantized users, while the
uncoded users are evaluated on their corresponding linear
MMSE decoding, ie. i = [D(1+3),[81]x, 1] with
D = diag {Al, . Ak, } assuming that this provides large
values for the likely vectors l. Since the last components of
s; are equal to the linear MMSE estimates in (11), in the
exponential part of the truncated Gaussian 7;(8) given by

1 . . 1~ A
exp <2(sl - sl)TCe 1(3; - sl)> ,

the term 8; — 5; is zero in the last K — K, components
corresponding to the uncoded users. This allows to express
the exponent of each truncated Gaussian 7; only as a function
of [ in such a manner that the search of the relevant vectors 1
reduces to finding those vectors whose corresponding exponent
is above a given threshold.

First, we partition the covariance matrix C's as

(v
o= (o)

where U corresponds to the uncoded users. Using this formu-
lation, the exponent in (13) can be rewritten in a lattice form
and the search for the relevant [ are the vectors that satisfy

exp (— A1) Al - lo)) >R

13)

(14)
where

-1
B=D+v(Alhh[AU+02)  Alh.hlA, (15)

1 ~
A=3B"(Q-vU ") 'B (16)
T T -1

I, = B! <U (ATh.hI AU +02T)
T 1 T 1

where the channel matrix
h o= [hehd, A, =
A, = diag {aKqH, cee aK}.

Hence, it is possible to build a set of feasible vectors [ such
that the following metric is below a threshold R/, i.e.

I—1)"Al—-1,) <R.

was decomposed as
diag {al, ceey aKq} and

(18)

After decomposing A = LT L where L is a low triangular
matrix, a sphere decoder will be used to efficiently determine
the I points in a lattice that fall into a sphere of radius R’
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centered in l,. Once the above search criterion is defined as a
function of the lattice A, we apply the same decoding strategy
with the sphere decoder proposed for modulo mappings [7].
Solving (7) directly requires techniques such as Monte Carlo
integration, that is even infeasible for moderate number of
users. Sphere decoding helps to reduce computational com-
plexity when correlation is larger than zero, by exploiting the
structure of the mapping, and narrowing the integration space
by reducing the number of relevant terms in (10).

As shown in [7], the size of the feasible intervals for
each component of [ is inversely proportional to the diagonal
elements of L. Therefore, a necessary condition that L must
satisfy to make those intervals as small as possible is that
the diagonal elements are larger than a certain value. In other
words, low values for the diagonal elements would imply large
intervals for all components of [, hence generating ambiguities
in the decoding process. As explained in the ensuing section,
this will play an important role in the parameter optimization.

IV. PARAMETER OPTIMIZATION

In order to improve the performance of DQLC in fading
MAC, the mapping parameters in A and D have to be
optimized. Since an exhaustive search over the parameter
space becomes prohibitive as the number of users increases,
we propose the following constrained optimization problem

arg min E[|s—.§MMSE|2} (19)
AD
b0<on<i -2 Vekl<k<K
S.T. S O S F(Ak)’ LS =~ q
0<ar < /T Vk, K, < k< K

This metric simplifies if we assume the quantized users
are correctly decoded. This can be accomplished with two
additional constraints to the above problem. First, a necessary
condition that the quantized users must satisfy is that the
diagonal elements of the matrix resulting from the Cholesky
decomposition of A be larger than a certain value.

Another important issue is the fact that allocating more
power to a user in DQLC implies, in general, to increase
the Ay parameters for previous users and, consequently, the
ay parameters to avoid ambiguities in the received channel
symbols (see [9]). However, the maximum value for aj is
upper bounded by the available power. Hence, if this bound is
reached by some users, allocating more power to others can
cause ambiguities in the decoding process.

In order to avoid this situation, we introduce a constraint
over the maximum achievable values for the oy, of the quan-
tized users. Since lima, 00 I'(Ag) =~ %, an upper bound for
such «ay, values is /2T, and we can detect this situation by
determining the distance of oy, to that upper bound. Hence,
(19) is approximated as

argmin e(D, A)

)

(20)

T,
L(Ag)

sit. 0<a; < Vk,1 <k <K,
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0< ap < /T VK, <k <K
0<ap <2 —pu, VEI1IZESK, (21)
[Llix > S, (22)

where e(D, A) is the error assuming that the intervals of the
quantized symbols are correctly guessed at the receiver, S is
a constant to ensure the diagonal elements are above some
threshold and is directly related to the chosen radius in the
sphere decoder, and 4 avoids the ay’s of the quantized users
achieve their maximum value for large Ay.

We first obtain an upper bound for the error of the quantized
users as

s Ag(i+1)
eq(Ag) = Z/ (s — 0;)*p(s)ds, (23)

Api

where §; is the decoded value corresponding to the user
transmitted in the ¢-th interval and is given by

A _ [202 exp(—a?) — exp(—b?)
;= /A y SP(SWS—\/T Qb)) — Q(a)

Ak’b

(24)

and b; = Ap(i+1)

\/205

. Hence, the above bound

where a; =

can be expressed as

eq(Ar) =02 + = 252

\/2 225 (exp(—

This is an upper bound because it computes the error ignoring
the source correlation. Then, an upper bound on the error of
the uncoded users is computed as e, (A, ) = [Celk, k- Thus,
an upper bound on the overall MMSE assuming the quantized
users are correctly decoded is

Q

Q(as))

—exp(=b})).  (25)

(26)

K
E Cu,k-

k=Q+1

e(D,A,) =
k=1

We now address the rewriting of the constraint (21).
As observed in (16), the elements of A depend on

D,A;, and A,. Let us decompose A, =
P,A,, with P, = diag{\/Pl,.. ,/PKq} and A =

dlag{\/?,..

and, therefore, we can approximate A,
this approximation in (15), we obtain

\/7} For low Ay values, Ay ~ \/;

~ P,D. Replacing

—1
B~ <1 +v (AfhuthuU + 031) AfhuthPq> D.
We now define the lattice
A=D 'AD'=D'LTLD™!,

that only depends on P, and A,. Hence, for given P, and
A, we look for the minimum Ay that ensures the diagonal
elements of L are above some threshold S. This can be
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computed with the help of the decomposition A = L™ L and
making

Vk,1<k<K,. Q7

L]

)

Finally, we replace the constraint (22) in the optimization
problem by this expression.

Next, let us define the power allocation vector p =
[P1y- s P, QK rs - -5 QK where py are the diagonal ele-
ments of P,. Replacing oy, = ,Vk,1 <k < K, the

\/I‘(A )’
problem (19) is transformed into

Ky K
arg min Z eq(Ag) + Z €k (28)
p k=1 k=K,+1
s.t. 0 < Pk < Tk, vk
Pk
— < 2T}, — pu, Vk,1 <k <K,
T (A (Ak) S E— M q
A 5 Vk, 1<k <K,
k [.i-/]k7k7 y L= = fgq-

This is a non-linear optimization problem that must be
solved numerically, but the operations involved in the com-
putation of the cost function and the constraints have a lower
computational complexity than the exact computation of the
expected distortion [9]. Also, it removes assumptions on the
structure of the source covariance matrix. Finally, the search
space is reduced since the Ay quantization steps are estimated
as a function of the user power allocation. In the ensuing
section, we resorted to the Matlab function fmincon to
numerically solve this problem.

V. SIMULATION RESULTS

In this section, the performance of the DQLC mapping is
assessed by computer simulations for different fading MAC
scenarios. At each time instant, a vector of K source symbols
is generated from a zero-mean multivariate Gaussian distribu-
tion with a covariance matrix whose elements are given by
[Cslkr = 1 and [Csl; ; = p,Vi # j. The source symbols
are individually encoded at each user using the described
DQLC mapping with the parameters optimized as explained
in Section IV. We focus on the case of K; = K — 1. Thus,
only one user will transmit a scaled version of its source
symbol. The radius of the sphere decoder was set to R = 5.
The parameter optimization was carried out with S = 5 and
© = 0.03. We also assume that the power constraints are
equal for all users, i.e. T, = T,Vk, and hence the SNR is

= T/o?2. Channel vectors h remain constant during the
transmission of blocks of 200 user symbols, and the channel
realizations are generated according to a Rayleigh distribution.
Performance upper bounds assuming collaboration among all
users are also plotted. Such bounds are obtained by equating
the rate-distortion function of correlated sources to the single
user MISO capacity with K transmit antennas.

The encoded symbols are then transmitted over the MAC
and the received symbol are employed to obtain an estimate of
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Fig. 2. SDR vs SNR for K = 3 and different correlation factors.
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Fig. 3. SDR vs SNR for p = 0.5 and different number of users.

the transmitted source symbols. Finally, the distortion between
the source and estimated symbols is measured according to the
MSE, and averaged over L independent transmissions

.1 &
fzﬁgk

The system performance is measured in terms of Signal-to-
Distortion Ratio (SDR) defined as SDR[dB] = 10log,,(1/).

Fig. 2 shows the SDR obtained with the optimized DQLC
mapping for K = 3 users and correlation factors p = 0.5
and p = 0.95, when the SNR ranges from O to 50 dB. The
curve corresponding to the performance obtained with uncoded
transmission and to the performance upper bound assuming
collaboration is also plotted for comparison. As observed,
for low SNR values, the uncoded scheme performs better
than DQLC, but its performance saturates above some SNR
threshold (n > 10 dB for p = 0.5 and 7 > 20 dB for p = 0.9).
Beyond that point, DQLC provides superior performance to
the uncoded scheme, and this performance gain also increases
with the SNR. Uncoded transmission achieves the upper bound
for low SNRs, and there is a gap around 6-8 dB with respect
to DQLC in large SNRs, depending on the source correlation.

K
‘Sk — §k‘2. 29)
=1
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Fig. 3 compares the performance for different number of
users with p = 0.5. The same behavior is observed, where
the DQLC is able to improve the performance of uncoded
transmission only for large SNR values. Moreover, the SDR
decreases when the number of users increases, a behavior also
observed in the upper bound, hence these gains are lower when
K is large.

VI. CONCLUSION

Parameter optimization for DQLC joint source-channel
coding in fading MAC with correlated sources has been
considered. Optimization is based on an upper bound of
the MSE assuming that the quantized users are correctly
decoded. The optimal parameters are obtained by solving a
non-linear constrained optimization problem that minimizes
the likelihood that the interval of the quantized users is missed
at the receiver. Results show that this approach provides good
solutions for different numbers of users, and allows to beat the
performance of uncoded transmission for large SNR values.
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