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Abstract—Estimation of the relative transfer functions (RTFs)
vector of a desired speech source is a fundamental problem in the
design of data-dependent spatial filters. We present two common
estimation methods, namely the covariance-whitening (CW) and
the covariance-subtraction (CS) methods. The CW method has
been shown in prior work to outperform the CS method.
However, thus far its performance has not been analyzed. In this
paper, we analyze the performance of the CW and CS methods
and show that in the cases of spatially white noise and of uniform
powers of desired speech source and coherent interference over
all microphones, the CW method is superior. The derivations are
validated by comparing them to their empirical counterparts in
Monte Carlo experiments. In fact, the CW method outperforms
the CS method in all tested scenarios, although there may be
rare scenarios for which this is not the case.

Index Terms—spatial filter, beamformer, RTF.

I. INTRODUCTION

Spatial filtering is a fundamental operation of modern
speech processing applications in which multichannel micro-
phone signals are filtered and summed to extract a desired
speech signal. For a survey on spatial filtering techniques
for speech signals please refer to [1]–[3]. The design criteria
for the minimum variance distortionless response (MVDR)
beamformer [4], [5] and for the multichannel Wiener filter
(MWF) [1], [6] are widely used for optimizing the signal-
to-noise ratio (SNR) at the output. These spatial filters are
data-dependent, and their design takes into account the sound
fields of the desired signal and noise.

Particularly, these methods rely on the second-order statis-
tics of the noise and desired speech components, given by
the noise covariance matrix and the RTFs vector, comprised
of the transfer functions (TFs) relating the desired speech
component at each microphone to the respective component at
the reference microphone. In dynamic scenarios, in which the
positions of desired source and the device and the noise field
may change over time, correspondingly updating the spatial
filter is required to achieve the optimal SNR. To this end,
estimation and tracking of the RTFs vector of the desired
speech and of the noise covariance matrix is required. In the
following we address the problem of estimating the RTF.

A plethora of methods are known for estimating the RTFs
vector, e.g. [5]–[11]. Two common methods for estimating
it are the CS [6], [8], [12], [13] and CW [9], [12], [14]
methods. Batch versions thereof rely on sample covariance

matrix (SCM) estimations for two batches of multichannel
observations, containing noise only and noisy speech compo-
nents, respectively. In [15], the performance of the CS method
has been analyzed and compared to the empirical performance
of the CW method. It has been shown that the CW method
outperforms the CS method. However, so far a theoretical
analysis of the performance of the CW method has not been
derived.

In the following we analyze the performance of the CW
and CS methods for RTF estimation and compare them. The
structure of the paper is as follows. In Sec. II we formulate
the problem and in Secs. III and IV we describe the CW and
CS methods for estimating the RTFs vector, respectively, and
analyze their performance. In Sec. V, the expressions for the
performance of the CW and CS methods are compared and in
Sec. VI we verify these expressions through simulation and
compare the empirical performance values in multiple Monte
Carlo experiments to their respective theoretical values.

II. PROBLEM FORMULATION

Consider the problem of estimating the RTF of a desired
speaker. We formulate the problem in the short-time Fourier
transform (STFT) domain. Let s(n, f) denote the desired
speech signal, where n and f denote the time-frame and
frequency-bin indices, respectively. The speech signal is prop-
agating in a reverberant enclosure and is being picked by a
microphone array comprising M microphones. The received
signals are contaminated by additive multichannel noise, de-
noted by w(n, f), and are given by:

x(n, f) = h(f)s(n, f) + w(n, f) (1)

where h(f) is a normalized vector of acoustic transfer
functions (ATFs) such that the Euclidean norm is given by
‖h(f)‖2 = M . For a simpler notation, hereafter we omit the
frequency-bin index f . Let φs(n) , E

[
|s(n)|2

]
denote the

variance of s(n), where E [·] denotes the expectation operator,
and let the received noise

w(n) , hivi(n) + u(n) (2)

be a superposition of a stationary spatially white noise, de-
noted u(n), and a coherent stationary interference component,
denoted vi(n). Their corresponding spectra are denoted φu
and φi. The vector of ATFs of the coherent interference is
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normalized, similarly to h. The norms of the actual ATF
vectors of the desired and coherent interfering sources which
include propagation loss are absorbed into the respective
sources, i.e. s(n) and vi(n), and their variances, i.e. φs(n)
and φi. Define

βs(n) ,φs(n)/φu (3a)

βi ,φi/φu (3b)

as the SNR and interference-to-noise ratio (INR), respectively.
Selecting the first microphone as reference, we denote the
vector of RTFs of the desired speaker as:

g , h/eT1 h= h/h1 (4)

where e1 ,
[

1, 0, · · · , 0
]T

is an M ×1 vector, which
extracts the first element from another M×1 vector by forming
the joint inner product, ·T denotes the transpose operator and
h1 denotes the first element of h.

Since the noise is stationary and assumed to be ergodic, its
covariance matrix, defined as

Φw , E
[
w(n)wH(n)

]
= φihih

H
i + φuI, (5)

where ·H denotes the transpose-conjugate operation, can be
estimated with negligible error if averaging over a sufficiently
long time interval. Therefore, we assume that Φw is known
and can be used to estimate the RTFs vector. The covariance
matrix of the microphones signals at the n-th frame equals:

Φx(n) = φs(n)hhH + Φw. (6)

The problem at hand is to estimate g given a set of
N noisy speech multichannel observations, i.e., {x(n)}N−1

n=0 ,
also denoted as the given observation segment. Define the
average covariance matrix of the received signals in the given
observation segment as:

Φ̄x ,
1

N

N−1∑
n=0

Φx(n) = φ̄shhH + Φw (7)

where φ̄s , 1/N
∑N−1
n=0 φs(n).

In the following sections we present two common ways
for estimating the RTFs vector. The CS and CW methods are
presented in Secs. III and IV, respectively.

III. THE COVARIANCE-WHITENING METHOD

A. Description

Define the square-root decomposition of the noise covari-
ance matrix as:

Φw = ΦH/2
w Φ1/2

w (8)

where the matrix Φ1/2
w is referred to as the square-root of Φw

and ΦH/2
w ,

(
Φ1/2
w

)H
. This decomposition is non-unique,

and among common square-root decompositions one can find
the Cholesky decomposition and the eigenvalue decomposi-
tion (EVD) based square-root decomposition. The following
derivation is not limited to a certain selection of the square-
root operation.

Define the whitened microphone signals as:

z(n) , Φ−H/2w x(n). (9)

It is called whitened since the multichannel noise components
of the elements of z(n) are spatially white with unit variance.
Given a set of multichannel observations, the covariance
matrix of z(n) is estimated using the SCM method:

Φ̂z ,
1

N

N−1∑
n=0

z(n)zH(n). (10)

Compute the EVD of Φ̂z , defined as Φ̂z = Ψ̂Ω̂Ψ̂
H

, where
Ψ̂ is a matrix, the columns of which are the eigenvectors of
Φ̂z , and where Ω̂ is a matrix whose diagonal elements are
the eigenvalues of Φ̂z , and denote the principal eigenvector
of (10) as ψ̂. The CW based estimator for the RTFs vector is
then given by:

ĝCW ,
ΦH/2
w ψ̂

eT1 ΦH/2
w ψ̂

. (11)

In the following section we analyze the performance of this
estimator.

B. Analysis

Define:

α ,
√

hHΦ−1
w h (12a)

ψ ,α−1Φ−H/2w h (12b)

ω(n) ,|α|2φs(n) + 1 (12c)

Φ̄z ,E
[
Φ̂z

]
. (12d)

By substituting (7), (8) and (9) in (10), Φ̄z can be shown to
equal:

Φ̄z = (ω̄ − 1)ψψH + I (13)

where ψ and ω̄ are the principal eigenvector and eigenvalue
of the EVD of Φ̄z , i.e. Φ̄z = ΨΩ̄ΨH , respectively, where
Ψ and Ω̄ are the eigenvector and eigenvalue matrices of Φ̄z ,
respectively, and

ω̄ = |α|2φ̄s + 1. (14)

Let us consider (11). In [16], [17], the EVD of a SCM
is analyzed and expressions for the first and second-order
moments of its eigenvectors and eigenvalues are derived. It
is shown that the estimated eigenvalues are unbiased and that
for eigenvalues with a multiplicity of 1, the estimates of their
respective eigenvectors are also unbiased. Following these
derivations, we find that the mean of the estimated principal
eigenvector is E

[
ψ̂
]

= ψ and its corresponding covariance
matrix is:

Θψ ,
Ω̄1,1

N

∑
m6=1

Ω̄m,m(
Ω̄1,1 − Ω̄m,m

)2 (Ψem) (Ψem)
H

=
ω̄

N (ω̄ − 1)
2

(
I−ψψH

)
(15)
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where in the last step we substituted the eigenvalues of the
matrix Φ̄z , i.e., Ω̄1,1 = ω̄ and Ω̄m,m = 1 for m = 2, . . . ,M ,
and em is a selection vector with 1 as its m-th element and
0 for all other elements. Note that in [16], [17], the mean
and covariance are derived for stationary signals whereas,
here, the desired speech is non-stationary. We conjecture that
similar expressions can be derived using the average whitened
covariance matrix, defined in (13).

Define the estimation error of ψ as:

ψ̇ , ψ̂ −ψ (16)

Consider the denominator of the CW based RTF estimator
in (11). By substituting (16) in eT1 ΦH/2

w ψ̂, the latter can be
expressed as:

eT1 ΦH/2
w ψ̂ = eT1 ΦH/2

w ψ

(
1 +

eT1 ΦH/2
w ψ̇

eT1 ΦH/2
w ψ

)
(17)

and assuming a sufficiently large segment (i.e., N � 1), we

can approximate
√

E
[
|eT1 ΦH/2

w ψ̇|2
]
� |eT1 ΦH/2

w ψ| and the

reciprocal of (17) can be approximated using first order Taylor
series expansion as:

1

eT1 ΦH/2
w ψ̂

≈ 1

eT1 ΦH/2
w ψ

(
1− eT1 ΦH/2

w ψ̇

eT1 ΦH/2
w ψ

)
. (18)

By substituting (18) back to (11) and neglecting second order
terms of ψ̇, the estimated RTF can be approximated as:

ĝCW ≈ g +
α

h1

(
I− heT1

h1

)
ψ̇. (19)

Note that since E
[
ψ̇
]

= 0, when the latter approximation of
the CW estimator is valid it is unbiased. The covariance matrix
of ĝCW, denoted as ΘCW, can therefore be approximated as:

ΘCW ≈
|α|2

|h1|2

(
I− heT1

h1

)
ΦH/2
w ΘψΦ1/2

w

(
I− heT1

h1

)H
=

1

Nβ̄s|h1|2

1 +
1

Mβ̄s

(
1− Mβi|ρ|2

Mβi+1

)
Γ (20)

where

Γ ,βihih
H
i + I +

βi|hi,1|2 + 1

|h1|2
hhH

−

(
βihi,1hhHi + heT1

h1
+

(
βihi,1hhHi + heT1

)H
h∗1

)
(21)

and

β̄s ,φ̄s/φu (22a)

ρ ,hHhi/M (22b)

are the average SNR and the angle between h and hi,
respectively.

The variance of the estimation error of ĝCW is defined as

θCW ,E
[
‖ĝCW − g‖2

]
= trace (ΘCW)

=
1

Nβ̄s|h1|2

1 +
1

Mβ̄s

(
1− Mβi|ρ|2

Mβi+1

)
 γ (23)

where γ , trace (Γ) is given by

γ = M

(
1 +
|hi,1|2

|h1|2
− 2
|hi,1|
|h1|

real (ρ̃)

)
+ 1− 2

M
+

1

|h1|2
(24)

and ρ̃ ,
h1h

∗
i,1ρ

|h1|·|hi,1| is the normalized angle between g and
hi/hi,1. Examining (23) we note that, the estimation error is
inversely proportional to number of observations N , so that
ĝCW is a consistent estimate.

IV. THE COVARIANCE-SUBTRACTION METHOD

A. Description

Given N multichannel observations, we estimate the aver-
age covariance matrix of the received signals using SCM:

Φ̂x ,
1

N

N−1∑
n=0

x(n)xH(n). (25)

Define

Φ̂∆ , Φ̂x −Φw. (26)

The CS based estimator for the RTF vector is then given by:

ĝCS ,
Φ̂∆e1

eT1 Φ̂∆e1

. (27)

B. Analysis

Similarly to the approximated reciprocal of the denominator
in (18), the reciprocal of the denominator in (27) can be
approximated by

1

eT1 Φ̂∆e1

≈ 1

eT1 Φ̄∆e1

(
1− eT1 Φ̇xe1

eT1 Φ̄∆e1

)
(28)

where Φ̄∆ , Φ̄x − Φw. We note that the estimation error

of Φ̄∆ equals Φ̂∆ − Φ̄∆ = Φ̇x with
√

E
[
|eT1 Φ̇xe1|2

]
�

eT1 Φ̄∆e1.
By substituting (28) into (27) and neglecting second-order

terms of the estimation errors Φ̇xe1, the CS based RTF
estimator can be approximated, similarly to (19), as

ĝCS ≈ g +
1

φ̄s|h1|2

(
I− heT1

h1

)
Φ̇xe1. (29)

Note that since E
[
Φ̇x

]
= 0, when the latter approximation of

the CS estimator is valid it is unbiased.
The expectation of Φ̂x in (25) equals Φ̄x, see (7). The

statistics of a SCM obeys a complex Wishart distribution [18],
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so that the covariance of the errors of the estimated elements
(i1, j1) and (i2, j2) is:

E
[(

eTi1Φ̇xej1

)(
eTi2Φ̇xej2

)∗]
=

(
eTi1Φ̄xei2

) (
eTj1Φ̄xej2

)∗
N

.

(30)

As a special case of (30), the second-order statistics of the
vector Φ̇xe1 is:

E
[(

Φ̇xe1

)(
Φ̇xe1

)H]
=

eT1 Φ̄xe1

N
Φ̄x. (31)

Next, considering the covariance of the CS estimator in (29)
and substituting (31) yields:

ΘCS =
eT1 Φ̄xe1(
φ̄s|h1|2

)2 (I− heT1
h1

)
Φ̄x

(
I− heT1

h1

)H
. (32)

By reformulating (32) and substituting (3a), (3b) and (21),
ΘCS can be expressed as

ΘCS =
1

N |h1|2β̄s

(
1 +
|hi,1|2βi + 1

|h1|2β̄s

)
Γ. (33)

Similarly to (23), by substituting (24) we derive that

θCS ,E
[
‖ĝCS − g‖2

]
= trace (ΘCS)

=
1

N |h1|2β̄s

(
1 +
|hi,1|2βi + 1

|h1|2β̄s

)
γ. (34)

V. PERFORMANCE COMPARISON

We compare the performance of the CW and CS methods.
Note that the covariance matrices of both estimators, (20)
and (33), are scaled versions of a common matrix 1

N |h1|2β̄s
Γ,

i.e. they have the same spatial properties. Therefore, the
performance ratio of CW and CS methods equals

ξ , θCW/θCS =(
1 +

Mβi + 1

Mβ̄s (Mβi (1− |ρ|2) + 1)

)
/

(
1 +
|hi,1|2βi + 1

|h1|2β̄s

)
.

(35)

Let us consider two special scenarios: 1) only spatially white
noise, i.e. βi = 0; and 2) far-field or uniform powers i.e.
|hm| = |hi,m| = 1 for m = 1, . . . ,M . For the first case, i.e.
only spatially white noise exists, we obtain:

ξu =
1 + 1/(Mβ̄s)

1 + 1/(|h1|2β̄s)
. (36)

Clearly, in this case the CW estimator outperforms the CS,
since |h1|2 ≤ ‖h‖2 = M . Note that for very high SNR the
performance of both estimators is equal, and for very low
SNR, i.e. β̄s � 1, the error of the CW is lower by a factor of
M/|h1|2 ≥ 1.

For the second scenario, the far-field case or the uniform
powers case, we obtain:

ξff =

(
1 +

βi + 1/M

β̄s (Mβi (1− |ρ|2) + 1)

)
/

(
1 +

βi + 1

β̄s

)
.

In this case, the CW estimator also outperforms the CS, since
βi + 1/M < βi + 1 and β̄s

(
Mβi

(
1− |ρ|2

)
+ 1
)
≥ β̄s.

Note, that in the general case of (35) there may be rare
cases for which the CS outperforms CW, i.e. ξ > 1. This may
happen when |ρ|2 → 1 and Mβi � 1, i.e. when h and hi are
almost identical and the INR is very large. In this case, ξ can
be approximated as

ξ0 ≈
(

1 +
βi
β̄s

)
/

(
1 +
|hi,1|2βi + 1

|h1|2β̄s

)
. (37)

If additionally |hi,1| < |h1|, the CS method will outperform
the CW method. Note that since we assumed that |ρ|2 → 1,
we can expect that |hi,1| ≈ |h1| and conclude that even in
these rare cases the performance of the CW method will not
be much worse than that of the CS method.

VI. VERIFICATION

To verify the derived performance expressions for the CW
and CS methods we conduct multiple Monte-Carlo experi-
ments for various simulated scenarios and compare the empir-
ical performance values to their theoretical counterparts.

Since all derivations in this paper are frequency indepen-
dent, we simulate narrowband scenarios and analyze their
performance. The following are the baseline values used
for various parameters of the simulation. The number of
microphones M is set to 10, the SNR and INR are set
to 20dB and 10dB, respectively, the number of frames N
is set to 1000 and the squared absolute angle between the
ATFs of the desired speaker and the coherent interference
|ρ|2 is set to 0.5. For each scenario 100 different cases of
h and hi are randomly selected (rather than simulating a
specific microphone constellation), and for each case 100 time
segments of length N are randomly generated and used for
constructing the CW and CS estimators. We compute the
empirical second-order statistics of aforementioned estimators.

We validate the derivations and examine the effect of
changing a single parameter while keeping the others set
to their predefined baseline values. Due to space limitations
we present only part of the results. The tested parame-
ters are selected from the following ranges: 1) SNR values
β̄s ∈ {0dB, 5dB . . . , 40dB]; 2) number of microphones M ∈
{2, 4, . . . , 20}; and 3) |ρ|2 ∈ {0, 0.05, . . . , 1}. The baseline
values are selected as intermediate points in the ranges of the
various parameters. The results of aforementioned cases are
depicted in Figs. 1,2 and 3, respectively. In each figure, we
depict the empirical squared absolute error of the CW and
CS RTF estimators, denoted as θ̂CW and θ̂CS in solid lines,
respectively, and their theoretical counterpart values denoted
as θCW and θCS in dashed lines, respectively.

It can be clearly deduced from these figures that the
derivations are valid. We note that the performance of both
estimators improve as the SNR increases, and for sufficiently
high SNR they coincide. For low SNR the CW significantly
outperforms the CS method, while for very low SNR values,
the approximations used in the derivations are violated (e.g.,
(18),(28)) and the empirical performance values differ from
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the theoretical ones. Also, the performance of both estimators
improves as |ρ|2 increases (Fig. 3) and as the number of
microphones M decreases (Fig. 2). Evidently from these
figures, the CW method outperforms the CS method in all
cases that were tested.

Fig. 1: Performance of CW and CS estimators for different
values of SNR.

Fig. 2: Performance of CW and CS estimators for different
values of M .

Fig. 3: Performance of CW and CS estimators for different
values of |ρ|2.

VII. CONCLUSION

We have considered the problem of RTF estimation, and
have analyzed the performance of two common methods,
namely the CW and the CS methods. The derivations have
been validated by comparison to empirical values that were
obtained in Monte Carlo experiments. Extending the analysis

to the case of very low SNR will be treated in future work. The
CW method has been shown to outperform the CS method in
the cases of a spatially white noise and of uniform powers for
desired source and coherent interference over all microphones.
In fact, the CW method has outperformed the CS method
in all scenarios that were tested, although there may be rare
scenarios for which it is not the case.
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