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Abstract—Many papers have recently been published on image
restoration and single-image super-resolution (SISR) using differ-
ent deep neural network architectures, training methodology, and
datasets. The standard approach for performance evaluation in
these papers is to provide a single ’average” mean-square error
(MSE) and/or structural similarity index (SSIM) value over a test
dataset. Since deep learning is data-driven, performance of the
proposed methods depends on the size of the training and test sets
as well as the variety and complexity of images in them. Further-
more, the performance varies across different images within the
same test set. Hence, comparison of different architectures and
training methods using a single average performance measure is
difficult, especially when they are not using the same training and
test sets. We propose new measures to characterize the variety
and complexity of images in the training and test sets, and show
that our proposed dataset complexity measures correlate well
with the mean PSNR and SSIM values obtained on different
test data sets. Hence, better characterization of performance of
different methods is possible if the mean and variance of the MSE
or SSIM over the test set as well as the size, resolution and
complexity measures of the training and test sets are specified.

Index Terms—Image restoration, super-resolution, convolu-
tional nets, deep learning, complexity of training and test datasets

I. INTRODUCTION

Various linear, adaptive, and nonlinear filters have been
developed for image restoration and single-image super-
resolution (SISR) over the years [1]. It is well-known that
linear filters are limited by their ability to trade-off noise am-
plification with regularization artifacts [2]. Adaptive restora-
tion filters can control the amount of ringing artifacts by
avoiding filtering across sharp edges (high spatial frequencies).
Methods to avoid ringing originating from model-misfit at
image boundaries were also discussed. Traditionally, different
classical image restoration and SISR methods have been tested
on a few standard images, such as Cameraman and Lena,
and the mean square error (MSE) or peak-signal-to-noise
ratio (PSNR) scores have been reported for evaluation and
comparison of methods.

Recently, deep neural networks have proven successful in
learning deblurring and super-resolution models in a super-
vised manner from a large number of example sharp and
degraded image pairs. These are non-linear filters, which are
not limited in their ability to suppress both noise amplification
and regularization artifacts; hence, they produce much better
results compared with the traditional filters. Various different
deep network architectures and training methods exist, which
are briefly reviewed in Section II. However, the performance
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of deep learning based image restoration and SISR not only
depends on the network architecture and training methods,
but also on the characteristics of the training and test image
datasets, such as the size of the training set, as well as the
resolution, variety, and complexity of the images in the training
and test sets, which are not well-analyzed in the literature.
The main contributions of this paper are: We propose
e a new measure of image complexity in the frequency
domain
o to measure the variety of images in a dataset by the
variance of the proposed image complexity measure
o to measure the “difficulty” of the training and test sets by
the mean and variance of the proposed image complexity
measure over the respective datasets
o to characterize the performance of deep restoration or
SISR methods by providing the mean and variance of
the MSE and/or SSIM [3] over the test set, as well
as providing the mean and variance of the complexity
measures of the training and test datasets.

The rest of the paper is organized as follows: Related works
are summarized in Section II. Deep network architectures and
training methods used in this work are detailed in Section III.
The proposed methodology to evaluate the effect of datasets
is presented in Section I'V. Experimental results are shown in
Section V, and conclusions are provided in Section VI.

II. RELATED WORKS

Several image restoration and SISR methods using different
deep network architectures and training methods exist in the
literature. Early work using deep neural networks for SR
by Dong et al. [4] used a three-layer network. Kim et al.
[5] used residual learning for SISR. An auto-encoder with
skip connections was proposed for deblurring and SISR [6],
and residual learning with adversarial training for SISR was
proposed in [7]. Twenty different SR methods that have
competed in the first open challenge (NTIRE 2017) for SR
using deep learning are described in [8]. A cascade of two
convolutional networks [9] was proposed to solve deblurring
and denoising sequentially. For blind space-varying deblurring
a conditional adversarial network [10] and DenseNet based
adversarial network [11] were proposed.

There is some work on interpretability of deep learning
models in the literature [12]. However, no prior work exists
on the evaluation of complexity and difficulty of training and
test data sets for image restoration and super-resolution.
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III. ARCHITECTURES AND TRAINING METHODS

This section presents the deep network architectures and the
training methods that are used in this paper.

A. Architectures

For SISR, we employ the SRResNet architecture [7] in our
experiments. The network has a convolutional layer and a
nonlinearity at the input stage. Next, there are 16 residual
blocks followed by 2 upsampling blocks. The upsampling
blocks consist of one convolutional layer and a pixel shuffler
layer. Finally, there is also a convolutional layer at the output
stage. The input and output of the network are RGB images.
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Fig. 1. Deep image restoration network.

For image restoration, we only excluded the upsampling
blocks from SRResNet architecture that is used in our SISR
experiments. The architecture of this deblurring network,
which also has 16 residual blocks, is depicted in Figure 1.

B. Training Methods

We train both networks using the DIV2K training dataset
[13]. Non-overlapping 96 x 96 crops are taken from all
800 training images, which yields 235,809 training patches.
Degraded image patches are created according to the distortion
model:

y(n1,m2) = D{h(n1,n2) * x(n1,n2)} +n(ni,n2) (1)

where :(n1,n2) is the original patch, h(nq,n2) is the known
blurring filter, * is the linear convolution operator, D is the
down-sampling operator, 77(n1,ns) is white Gaussian noise
with variance o2 such that the signal-to-noise ratio is 40 dB,
and y(ny,n9) is the degraded input patch. For the restoration
task, D is the identity operator and A is 11 x 11 box filter. For
the super-resolution task, D is the 4x down-sampling operator
and h is the 4 x 4 box filter.

The intensity of the degraded image pixels are scaled to
the (—1,1) interval and random horizontal flip is applied as
standard data augmentation technique. We train the networks
on the MSE using Adam optimizer [14] with learning rate
10~* as suggested in SRResNet. Mini-batch size is 32 for both
networks. We let the training algorithm run for a minimum
number of 200 epochs. We stop the training algorithm if no
further improvement is observed after 200 epochs.

IV. EFFECT OF DATASETS ON PERFORMANCE

This section introduces the proposed measures to quantify
image complexity and variety, which are used to evaluate the
“difficulty” of different training and test datasets.
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A. Image Complexity Measures

Inspection of restoration and SISR results reveals that the
performance of a method varies significantly, both visually and
in terms of MSE, between images in a single test set, as well as
across different test sets. We have observed that this variation
is related to the complexity (or frequency content) of images.
That is, if an image has high complexity, i.e. significant high
frequency content, then the performance of restoration or SISR
degrades. This leads us to propose two image complexity
measures to quantify the difficulty of an image for restoration
or SISR task. The first measure M}, given by

1
My, = N2 ZZ | X [k, ko] Flky, ko] |? @

k1 ko

quantifies how much power an image has in high frequencies,
where X|[ki, ko] is the discrete Fourier transform (DFT) of
the Y channel of the image x(n1,ns2), Flki, ko] is an ideal
high-pass filter with a specified cutoff frequency, and N is
the DFT size in each dimension. Since the largest images we
work with have 2K resolution, we set the DFT size to 2048
in both dimensions with zero-padding. We arbitrarily set the
cut of frequency in both dimensions to 0.57.
The second measure, M,., defined by
My,

M, = 7 3)
quantifies the ratio of the power in the high frequency band
to that in the low frequency band, where M}, is defined in
equation 2, and M; is defined similar to M}, but instead of a
high-pass filter, we use a low pass filter 1 — F[kq, k»].

B. Training Performance

Now that we defined measures to quantify how difficult an
image is for image restoration and SISR tasks, it is natural to
ask: Is it possible to assign difficulty measures to datasets?

Does the training set have sufficient complexity and variety?
We propose to quantify the complexity of a dataset by the
mean of M; and/or the mean of M, over a dataset. Since
neural networks solve image restoration and SISR problems
by learning an image manifold, there should also be sufficient
variety in the training dataset so that the network learns a
manifold that is representative of the test dataset. We propose
to quantify the variety in a dataset by the variance of the image
complexity measure M; and/or M, over a dataset. Hence, a
good training set should have a large mean M; and/or M,.,
and a large variance of M} and/or M, values to ensure that
the network learns a representative image manifold. Thus, we
recommend that, while selecting a subset of large datasets
such as ImageNet as a training set, the selection should not be
completely random but should take the mean and variance of
the metrics M}, and/or M, of selected images into account.

It is important to note that the number of images in the
training set is an independent parameter that is related to the
depth (hence, the degrees of freedom) of the neural network
and should be chosen to avoid overfitting. Although two
distinct datasets with different number of images in them may
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have similar mean and variance values for M} and/or M,
the larger dataset still contains more information and variety
to prevent model overfitting. Hence, the proposed measures
should be used to compare datasets of the same size.

Another important question is: Has the training converged?
We propose to consider the variance of the loss function, i.e.,
the MSE, in addition to the mean MSE over the training set.
The variance of MSE stems from the fact that different training
crops have different complexity. We have observed that as the
mean MSE decreases during iterations, the variance of the
MSE also decreases. Hence, the variance of the MSE is a
good indicator of convergence of training.

C. Test Performance

A typical test dataset contains tens of images. The perfor-
mance of restoration or SISR networks over individual images
in a test dataset can vary significantly. In the experimental
results in Section V, we show that this performance variation
depends on the complexity and variety of images in a test
dataset. Hence, providing a single mean MSE or PSNR value
without considering the complexity and variety (variation of
complexity) of images in a test dataset can be quite deceiving.

Similar to difficulty of a training set, we propose to define
difficulty of a test dataset in terms of the mean and variance
of complexity of images in a test dataset. The higher the
mean and variance of the complexity measures M} and/or
M,., the more difficult is a test dataset; hence, the mean and
the variance of the MSE will be higher. The mean complexity
measure will determine the mean MSE performance of the
network over the test dataset, whereas the variance of the
complexity will determine the variance of the MSE. This
allows us to compare the performance of a network on various
test datasets in a predictable manner. That is, a network
performs better on a test set, both visually and in terms of
mean MSE, compared to another, if the former test set has
lower mean and variance of complexity measure than the latter
set.

An important consequence of this observation is that we
can now explain why a network sometimes performs better
on a test dataset compared to the training dataset. Our results
show that this can happen when the test data set has lower
complexity (difficulty) compared to the training dataset. This
is also an indicator of that we do not overfit.

V. EXPERIMENTAL RESULTS

This section demonstrates that the mean and variance of
MSE and SSIM scores obtained for various test datasets
correlate well with the proposed dataset difficulty measures.

In our experiments, we use the training dataset of DIV2K
(denoted DIV2K train) with 800 images for training our
networks. For the test sets, we used the validation set of
DIV2K (denoted DIV2K val), GoPro [15], Sun-Hays80 [16],
BSD100 [17], Set5 [18], Setl4 [19], Urban100 [20], Kodak
datasets. We only pick the first and the last frame of every
sequence from the GoPro dataset yielding a total of 66 images.
The mean and variance of complexity measures M}, and M,
for these datasets are provided in Table I.
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Next, we show the performance of the image restoration and
SISR networks on different test data sets in Table II and Ta-
ble III, respectively. In these tables, we provide the mean MSE,
PSNR and SSIM scores for both RGB and Y (luminance) only
images, where the mean PSNR is computed as 10log10(5755)
such that M S E denotes the mean MSE score over the dataset,
since the image intensities are normalized to the range (0,1).
We also provided the variances of the MSE and SSIM scores
for the Y only images. Note that the mean and variances
of MSE and SSIM are computed for intensity-normalized
images. Note that the standard deviations of MSE scores are
in the same order of magnitude with the MSE scores, and the
standard deviations of SSIM scores vary between 0.03 and
0.04, which both indicate significant variation of performance
within the same test set. The visual performance of deblurring
11211 blur and SR by a factor of 4 for the images with the
lowest and highest M, scores are depicted in Figure 2.

In order to demonstrate that the performance variation
between different images is related to the variation of image
complexities, we present correlation coefficients between the
MSE and SSIM scores of Y channel and the M) scores
with the corresponding p-values in Table IV. We observe that
M}, shows stronger correlation compared to M, on every
dataset except SetS, which has only 5 images. P-values are
substantially small, which means correlation coefficients are
statistically significant for both metrics except Set5 and Set14,
which have small number of images. It should be noted here
that p-values of M} are always smaller than those of M,
except for Set5 and Set14. These results demonstrate that both
of proposed complexity metrics are statistically meaningful to
predict performance of restoration and SISR networks over
each test set, which contains images with similar resolutions.

On the other hand, M, predicts the performance of a
network more accurately, when we compare its performance
over two different datasets, which contain low and high
resolution images, respectively. High resolution images can
preserve higher frequencies from the analog domain compared
to low resolution images due to the Nyquist sampling theorem.
Because of this, although we use the same size DFT, the analog
frequencies that correspond to 0.57 are different for low and
high resolution images. Since the measure M, considers the
ratio of energy at the high and low frequency bands, it becomes
a more suitable measure for comparing performance over test
sets containing images with different resolutions. In fact, we
observe that the correlation coefficient between mean M,. and
mean MSE on the all test sets is 0.96 with p-value 2.42e-
05. This observation is also valid for the SISR results. It can
be verified from Table II and Table I that the the network
performs better on datasets with smaller mean M,.. Mean M,
values also explain why the network performs better on a
test set compared to the training set with the only exception
of DIV2K Val set. However, if we compare the mean M),
values for the DIV2K Train and DIV2K Val datasets, we
see that both the mean and variance of M) for DIV2K Val
are smaller than those of DIV2K Train. Hence, the measure
My, is a better predictor of performance when comparing two
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TABLE I
MEAN AND VARIANCE OF COMPLEXITY MEASURES FOR DIFFERENT DATASETS
Dataset Resolution | Mean M}, Var. My, Mean M, Var. M,
Training set | DIV2K Train Full HD 2251.5 5.4738e+06 | 3.8617e-3 2.975e-05
DIV2K Val Full HD 2226.7 4.6755e+06 4.530e-3 5.4387e-05
GoPro HD 274.25 8456.5 1.262¢-3 1.4337e-07
Sun-Hays80 HD 520.86 1.3307e+05 2.991e-3 5.4475e-06
Test st BSD100 SD 226.8 23911 7.189¢-3 3.1625e-05
Set5 SD 86.842 4305.7 3.561e-3 2.1294e-06
Set14 SD 291.91 53827 5.278e-3 1.3152¢-05
Urban100 SD 459.93 95847 1.010e-2 4.7518e-05
Kodak SD 392.86 82041 4.952¢-3 1.2454e-05
TABLE II

QUANTITATIVE IMAGE RESTORATION PERFORMANCE RESULTS ON DIFFERENT DATASETS.

computed on RGB computed on Y channel

Dataset MSE PSNR | SSIM MSE Var. MSE | PSNR | SSIM | Var. SSIM

Training set | DIV2K Train | 8.65e-4 | 30.63 | 0.9439 | 8.09¢-4 | 5.04e-07 30.92 | 0.9478 8.558e-4
DIV2K Val 8.30e-4 | 30.81 | 0.9437 | 7.83e-4 | 4.39e-07 31.06 | 0.9471 8.184e-4

GoPro 3.22e-4 | 3492 | 09745 | 3.04e-4 | 4.81e-08 35.17 | 0.9763 1.457e-4

Sun-Hays80 | 7.73e-4 | 31.12 | 0.9420 | 7.46e-4 | 3.90e-07 31.27 | 0.9444 | 7.712e-4

Test set BSD100 1.20e-3 | 29.20 | 09232 | 1.17e-3 | 8.10e-07 29.29 | 0.9256 1.214e-3
Set5 6.12e-4 | 32.13 | 0.9461 | 5.08¢-4 | 2.70e-08 3294 | 0.9568 6.086e-4

Setl4 1.20e-3 | 29.20 | 0.9185 | 1.00e-3 | 6.06e-07 29.98 | 0.9315 1.484e-3

Urban100 1.91e-3 | 27.19 | 0.9234 | 1.77e-3 1.50e-06 27.52 | 0.9288 9.581e-4

Kodak 7.76e-4 | 31.10 | 0.9399 | 7.5e-4 3.09e-07 31.25 | 0.9424 6.444e-4

datasets containing images with the same resolution. Another
observation is that the mean M,. of DIV2K Val is lower than
that of Kodak dataset, but the network performs better on the
Kodak dataset. This can be explained by checking the variance
of M, in these two datasets. Kodak dataset has a lower
variance of complexity, which explains the slightly better mean
MSE results despite having larger mean complexity measure.

VI. CONCLUSIONS

Experimental results validate the following points:

(1) Performance variation between individual images within
the same test set: Using a single mean PSNR or mean SSIM
value to evaluate results may not be appropriate since the
performance of networks for different images within the same
test set varies. This variation quantified by the variance of
MSE can be as high as 1.5x 102 when image intensity values
are scaled between 0 and 1. Note from Tables II and III that
the mean MSE is on the order of 10™3. Hence, this variance
implies that the standard deviation is in the same order of
magnitude as the mean. This variation of performance can be
related to the variation of complexity of images in the dataset.
We propose image complexity measures and show that there is
significant correlation between individual image PSNR values
and the complexity metric for images.

(ii) Performance variation across different test sets: The mean
PSNR performance over a test set is correlated with the mean
complexity metric for a test dataset. The PSNR performance
across different test sets varies between 27 and 34 dB, which
correlates well with the complexity of the respective datasets.
(iii) Goodness of a training set: Naturally, we would like
to train networks with the most difficult and representative
dataset. A good training set should have high mean complexity
measure M} and/or M, with a high variance, which indicates
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that we have training samples with sufficient variation of
image complexity.

(iv) Image resolution: The training set should contain images
that has the same or higher spatial resolution as the test set.
The capture resolution of images matters rather than their size.
Smaller image crops taken from high resolution images carry
higher spatial frequency information compared to images with
the same size but with smaller resolution.
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