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Abstract—In 2015, an estimated 1.3 million intrapartum still-
births occurred, meaning that the fetus died during labour. The
majority of these stillbirths occurred in low and middle income
countries. With the introduction of affordable continuous fetal
heart rate (FHR) monitors for use in these settings, the fetal
well-being can be better monitored and health care personnel
can potentially intervene at an earlier time if abnormalities in
the FHR signal are detected. Additional information about the
fetal health can be extracted from the fetal heart rate signals
through signal processing and analysis. A challenge is, however,
the large number of missing samples in the recorded FHR as fetal
and maternal movement in addition to sensor displacement can
cause data dropouts. Previously proposed methods perform well
on estimation of short dropouts, but struggle with data from
wearable devices with longer dropouts. Sparse representation
and dictionary learning have been shown to be useful in the
related problem of image inpainting. The recently proposed
dictionary learning algorithm, SI-FSDL, learns shift-invariant
dictionaries with long atoms, which could be beneficial for such
time series signals with large dropout gaps. In this paper it is
shown that using sparse representation with dictionaries learned
by SI-FSDL on the FHR signals with missing samples provides a
reconstruction with improved properties compared to previously
used techniques.

I. INTRODUCTION

Fetal heart rate (FHR) monitoring is a widely used method

to assess the fetal well-being during labour. FHR monitoring,

used by trained health care professionals, allows for early

detection of a fetus at risk and consequently appropriate and

timely action to prevent further harm to fetus and mother.

In high income countries, FHR monitoring in labours with

high risk are usually measured using continuous Doppler

ultrasound in cardiotocography (CTG), while low risk labours

are monitored intermittent with handheld Doppler devices.

In low resource settings, FHR is often accessed intermittent

with a fetal stetoscope or handheld Doppler. In 2015, there

were an estimated of 2.6 [uncertainty range 2.4-3.0] million

stillbirths [1], [2], with 1.3 [uncertainty range 1.2-1.6] million

deaths occuring during labour [1]. The vast majority (98%) of

these occur in low and middle income countries [1]. Improved

care at birth, including continuous FHR monitoring, is the

key to reduce the number of stillbirths. Abnormalities in the

FHR signal can be detected earlier with the use of continuous

monitoring. If any abnormalities are detected, an alarm can

be used to alert qualified health care personnel to assess the

situation. Additional information of the fetal well-being can

be extracted from the FHR signals through signal processing

and analysis. With the introduction of affordable devices for

continuous FHR monitoring, such as Moyo Fetal Heart Rate

Monitor, used in this study, new opportunities arises as these

devices are also obtainable in low resource settings.

A well-known problem measuring FHR using Doppler ultra-

sound are signal dropouts due to both fetal and maternal move-

ment in addition to sensor displacement. With the introduction

of wearable devices for continuous FHR monitoring, allowing

the mother to move freely while the device is attached, an

increase in both the number and length of signal dropouts

are expected. These missing samples are a challenge when

determining traditional features used to assess the fetal well-

being, such as the short and long time variability of the FHR,

as well as when doing time-frequency analysis on the heart

rate signal.

Simple methods such as linear interpolation [3] and cubic

Hermite spline interpolation [4] and more complex methods

such as Gaussian processes [5] and K-SVD [6] have previously

been used to estimate the missing samples on FHR recorded

by CTG. However, depending on the length of the gaps,

these methods affect computation of the traditional heart rate

features. As more and longer dropouts are expected when

using wearable monitors, better estimations are desired.

Dictionary learning and sparse approximation have been

shown to produce state of the art results in estimation of miss-

ing data [6]–[8]. An important advantage of using dictionary

learning over methods such as linear or spline interpolation is

that through learning from the signal class, a learned dictionary

introduces less artefacts during processing, feature extraction,

and time-frequency analysis.

For an inpainting problem with large gaps, unstructured

dictionaries, produced by general dictionary learning methods

such as MOD [9] or K-SVD [10] require large atom lengths

which means increase in number of free variables. This leads
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to slow training and usage as well as the possibility of

overfitting.

In this work we propose to use shift-invariant dictionary

by utilizing SI-FSDL, a dictionary learning method for shift

invariant dictionaries recently proposed by our group [11]. SI-

FSDL is capable of handling variable shifts and length of the

atoms.

II. DATA MATERIAL

The data used in this study are collected by the Safer

Births Research Project, which is a research collaboration with

partners including, but not limited to, University of Stavanger,

Laerdal Global Health, and partner hospitals in Tanzania. The

data were collected at Haydom Lutheran Hospital (HLH),

which is a rural hospital, and Muhimbili National Hospital

(MNH), and Temeke Regional Referral Hospital (TRRH)

which are both urban hospitals. 85 labours were monitored

and recorded at HLH between February 1st. and March 18th.

2016, 227 labours were recorded at MNH between March

15th. and July 13th. 2016, and 1087 births were recorded at

TRRH between June 4th. and October 1st. 2016. All data were

anonymized prior to transfer to researchers.

The project was ethically approved prior to implementation

by the National Institute for Medical Research (NIMR) in

Tanzania (NIMR/HQ/R.8a/Vol. IX/1434) and the Regional

Committee for Medical and Health Research Ethics (REK)

in Norway (2013/110/REK vest) before the start of the study.

Fig. 1. Moyo Fetal Heart Rate Monitor, Laerdal Global Health AS, Norway.
Illustration reproduced with permission [12]

Moyo Fetal Heart Rate Monitor, Fig. 1, is used to record the

fetal heart rate and is developed by Laerdal Global Health [13]

as an affordable FHR monitoring device for both intermittent

and continuous monitoring for use in low resource settings.

The device consists of a small handheld unit with display and

a sensor unit. For continuous monitoring, the sensor can be

applied to the maternal abdomen using an elastic band, shown

in Fig. 1. The sensor unit includes a 9-crystal pulsed wave

Doppler ultrasound sensor operating at a frequency of 1 MHz

and an intensity of less than: 5mW/cm2. The detected fetal

heart rate is logged at 2Hz. The sensor unit also includes

a 3-axes accelerometer sampled at 50Hz used to describe

maternal movement, and a temperature sensor, sampled at

2Hz. FHR and maternal HR as well as accelerometer and

temperature values are stored to files and can be accessed via

USB connection.

III. THE PROPOSED METHOD

Sparse representation and dictionary learning is based on the

idea that it is possible to represent a signal class sparsely in

some domain, and that a learned dictionary can represent this

domain. Let an N × 1 signal vector be denoted by x, and its

approximation as x̂ = Dw, where D is the dictionary matrix

of size N ×K, with the columns {di}Ki=1 forming dictionary

atoms, and w, K×1, is the vector of sparse coefficients. The

dictionary learning problem is formulated as follows:

W,D = argmin
W,D

‖X −DW ‖2F s.t

{
wi is sparse

||di||22 = 1.
(1)

where W and X are formed from concatenation of coefficient

wi and signal vectors xi respectively. Since equation 1 is

not tractable, it is usually broken into two steps: in the first

step, sparse coding, one would find W while fixing D. In

the second step, dictionary update, D is found while keeping

W constant. MOD [9] and K-SVD [10] are examples of

dictionary learning methods using these steps.

Fig. 2. A sample FHR signal, its masked version and simulated missing
samples. The masked signal has zeros as value where there are missing
samples and is equal to the original signal elsewhere.

In this paper we are dealing with recovering of missing

data or inpainting where the location of missing data is known

beforehand. Since signals and the location of missing samples

differ from patient to patient, and these analyses are done

in retrospect, we wish to learn a dictionary on the signals

with missing data to tailor the dictionary to the person, before

performing the reconstruction. For this reason, the information

about the missing samples is built into a mask matrix, M .

The mask matrix used in this paper, removes the corrupted

samples in the signal. This corresponds to removing rows in a

vector. So when there are p corrupted samples in a vector, the

mask matrix is made from an identity matrix with its p rows

removed which makes it (N − p)×N . Applying this matrix

to a dictionary (another matrix) leads to removal of p rows.
When having multiple vectors such as in X , there is a mask

matrix, M i, for every vector xi . Fig. 2 shows a sample FHR

signal along with the masked signal and the missing samples.
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Fig. 3. Different steps of inpaiting. The input contains missing samples. Each iteration of this method replaces the missing values with their approximated
version. This is done until some criteria is satisfied.

The literature describes two ways to incorporate the mask

information into the dictionary learning steps. One method

was used in [8], [14], [15] which alters both dictionary

learning steps. An alternative approach was briefly discussed

in [6] which requires only changes to the sparse coding step.

Meaning that the mask matrices are not used directly in

dictionary update stage. In this paper, we apply the second

method for inpainting using shift-invariant dictionary.

The altered steps required for the second method are as

follows:

1) While the dictionary entries are fixed, remove the rows

of the dictionary and the signal vectors corresponding

to the missing samples for each signal vectors and

normalize the dictionary columns to 1.

2) Find the coefficients using their own respective dictio-

naries and scale them proportional to masked dictionary

scale.

3) Find the approximation of the signal vectors by multi-

plying the coefficients with the full dictionary.

4) Reconstruct the signal by replacing the missing samples

with their approximated resulted from above.

5) Update the dictionary elements using any desired

method and normalize the columns to 1.

The first two steps describe the sparse coding stage for in-

painting and steps three and four are for keeping the dictionary

update stage in step 5 unchanged. The proposed method is

summarized in Alg. 1 using pseudocode and MATLAB syntax,

and it is visualized in Fig. 3.
For imposing the shift-invariant structure onto the dictionary

we utilized our previously proposed method, SI-FSDL [11]

which is a special form of FSDL [16]. One of the benefits of

shift-invariant dictionaries is that we can address larger gaps

(by using larger shift-invariant atoms) than a general dictionary

while keeping the number of free variables fixed.
An example of a small shift-invariant dictionary with three

shift-invariant atoms or SIAs, is depicted in Fig. 4. This

example does not have circular shifts, i.e. the the shifting ends

as the last non-zero element of a SIA reaches the bottom row

of the dictionary matrix. SI-FSDL handles variable length and

variable shift atoms as Fig. 4 illustrates.

Algorithm 1: Inpainting using Dictionary learning

1 Inputs : X(0) and Mi, i ∈ 1 .. Number of vectors
2 for n in Number of iterations do

Sparse Coding:
3 for i in Number of vectors do
4 DM i = M i ∗D
5 DM i = DM i ∗ diag(1./sqrt(sum(DM i. ∗DM i)))

6 xr = M i ∗ xi

7 wi = argmin
w

‖xr −DM i ∗w‖22 s.t w is sparse

8 wi = wi ∗ diag(sqrt(sum(DM i. ∗DM i)))
9 end

Dictionary Update:
10 Xc = signal matrix with corrupt samples zeroed out

11 X̂ = D ∗ W

12 X̂a = X̂ with clean samples zeroed out

13 X(n) = Xc + X̂a

14 Update D using the desired dictionary learning method

15 D = D ∗ diag(1./sqrt(sum(D. ∗D))))
16 end
17 Output: Inpainted X(final)

⎡
⎢⎢⎣
�0 0 ∗0 0 0 α0 0
�1 �0 ∗1 ∗0 0 α1 0
�2 �1 0 ∗1 ∗0 0 α0

0 �2 0 0 ∗1 0 α1

⎤
⎥⎥⎦

Fig. 4. A simple shift-invariant dictionary with 3 shift-invariant atoms(SIAs).
The first two SIAs have 1 shift while the last one has 2 shifts.

IV. EXPERIMENTS

A total of 691400 segments of missing samples are found

in the 1399 recordings in the dataset, with an average of

494 missing segments in each recording. In total, the missing

percentage of data is 36.4%. However, 96.9% of the missing

data gaps are less than 50 samples in length. The distribution

of the length in these gaps from 1 to 50 samples is shown in

Fig. 5.

We have chosen a signal without missing samples from our
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Fig. 5. Distribution of gap lengths

database and randomly removed parts of it so that the true

signal is available to evaluate the recovery results. The used

recovery methods are SI-FSDL, MOD, K-SVD, spline and

linear interpolation. During the experiments the number of free

variables in the dictionaries are kept constant at approximately

3000. The ratio of non-zeros coefficients to the number of

elements in the signal is 0.1. Signal blocks are chosen in an

overlapping fashion for the dictionary learning methods. Block

lengths, N , of 30, 40 and 50 are used for MOD and K-SVD,

and 500 for SI-FSDL. Orthogonal Matching Pursuit (OMP)

was used for sparse coding.

A. Experiment 1

The first experiment is designed to evaluate the average

performance of each method when the missing percentage is

fixed, but the gap lengths change. In order to have a realistic

scenario, the fixed missing percentages are set to 10 and 30.

The length of the gaps ranges from 1 sample to 50 samples.

To find the average performance for each gap length, different

randomly created masks are used.

Performance of the tested methods for 10% missing data

are shown in Fig. 6. All methods achieves similar performance

for short interval lengths, with the exception of spline inter-

polation. As the gap lengths increases, the performance of

MOD and K-SVD decreases. The exception to this is when

the segment length is 50. Their performance is at least as good

as linear interpolation and always better than SI-FSDL.

Performance of the tested methods for 30% missing data are

shown in Fig. 7. All methods achieves similar performance for

short interval lengths. With higher ratio of missing data, the

performance for MOD and K-SVD for all segment lengths

decrease faster than the case of 10%. The performance of

linear interpolation and SI-FSDL, remain almost the same

regardless of length of missing sample interval.

B. Experiment 2

The experiment is devised to have a closer look at the

best performing methods of last experiment when the missing

percentage is 30%, which is close to the percentage for our

dataset. These methods are linear interpolation and SI-FSDL.

The intent is to look at the continuous wavelet transform

Fig. 6. Recovery performance for different methods when the missing interval
changes but the missing percentage stays the same (10%)

Fig. 7. Recovery performance for different methods when the missing interval
changes but the missing percentage stays the same (30%)

of their reconstructed signals and see how similar the time-

frequency distribution of the reconstructed signal is to the

original signal.

The time-frequency response for a short section of FHR

with 3 missing gaps are shown in Fig. 8. In close-ups of the

signal around each mask, the original signal is shown in blue,

estimations using linear interpolation in dotted red, and SI-

FSDL in dashed black.

It can be seen by visual inspection that SI-FSDL restores

the time-frequency properties better than linear interpolation

even though the later has higher SNR.

V. DISCUSSION

It is worthwhile to note that while inpainting methods can be

utilized to reconstruct the gaps, they might miss some details

if the gaps become too large. In the case of FHR signals

temporary increases or decreases, known as accelerations and

decelerations in the heart rate, are important details when

determining the fetal well-being. In order to recover such

information, we need to know the duration of these patterns.

In an abrupt accelerations and decelerations the FHR has a

change of 15 beats per minute with a time from onset to

extremum of ≤ 30 seconds and total duration of less than

2 minutes. Based on this, it is safe to reconstruct segments

with a maximum length of 25 seconds, corresponding to 50
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Fig. 8. Continuous wavelet transform over a short signal with 3 gaps missing
samples. Original signal shown in blue, linear interpolation shown as dotted
red line, SI-FSDL shown as dashed black line.

samples. Fig. 5, shows that most of the gaps are short in length,

with 96.9% of the gaps below our upper limit.

On data where 10% of the samples are missing, Fig. 6, linear

interpolation and all dictionary learning techniques achieve

similar SNR for gaps ≤ 28 samples in length. MOD and K-

SVD with block length 50 show the best performance for all

the missing gaps. Increasing the missing percentage to 30%,

Fig. 7, a large drop in SNR is seen in both MOD and K-SVD.

Depending on the gap size, this dropout occurs for gaps larger

than 10, 17 and 23 samples. Since MOD and K-SVD have

block lengths of 30 to 50, they cannot restore gaps close or

larger than their size. A possible solution to this is to increase

the block length in MOD and K-SVD. However, this usually

means increasing the overall number of free variables as well

and learning a larger dictionary which requires more data and

processing time. Due to its structure, however, SI-FSD can

reconstruct larger gaps by adjusting the length and number of

SIAs.

A high SNR is seen for linear interpolation and SI-FSDL for

all gaps. The challenge of using linear interpolation, however,

is that it introduces artefacts, as seen in Fig 8. In the first and

third gaps, samples 300-330 and 525-555, linear interpolation

introduces artefacts by removing high frequencies. In the same

gaps, SI-FSDL shows more fidelity to the original signal. Both

methods perform similarly in the second gap, samples 405-

435, and introduce artefacts.

VI. CONCLUSION

The results presented in this work indicate that for dictio-

nary learning based methods, gap interval and missing per-

centage are important parameters when attempting to recover

missing data in the signal. When the missing percentage is

low, MOD and K-SVD achieve the highest performance, while

SI-FSDL outperforms the other methods when the missing

percentage is increased. A high SNR is also observed for linear

interpolation. Reconstruction based on dictionary learning

methods, however, are shown to be closer to the true signal

in terms of the spectral content of the signal. In order to

have reliable information, having less artefacts is crucial when

performing further analysis on the data.
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