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Abstract—This paper illustrates the improvement in accuracy
of classification for electroencephalogram (EEG) signals mea-
sured during a memory encoding task, by using features based
on a mean square error (MSE) optimal time-frequency estimator.
The EEG signals are modelled as Locally Stationary Processes,
based on the modulation in time of an ordinary stationary
covariance function. After estimating the model parameters,
we compute the MSE optimal kernel for the estimation of the
Wigner-Ville spectrum. We present a simulation study to evaluate
the performance of the derived optimal spectral estimator,
compared to the single windowed Hanning spectrogram and the
Welch spectrogram. Further, the estimation procedure is applied
to the measured EEG and the time-frequency features extracted
from the spectral estimates are used to feed a neural network
classifier. Consistent improvement in classification accuracy is
obtained by using the features from the proposed estimator,
compared to the use of existing methods.

I. INTRODUCTION

The analysis of electroencephalography signals (EEG) is
one of the main methodological tools in understanding how
cognitive functions are supported by the electrical activity
of the brain, [1]. The study of a time-frequency image is
often the method of choice to address key issues in cognitive
electrophysiology. Clearly, the quality of the time-frequency
representation is crucial for the extraction of robust and
relevant features, [1]-[4], thus leading to the demand for
highly performing spectral estimators. In this paper, we present
the improvements in classification accuracy for EEG signals
measured during a memory encoding task, [5], by using
time-frequency features based on a mean square error (MSE)
optimal time-frequency estimator.

We consider a stochastic parametric model for the signals,
based on the definition of Locally Stationary Processes (LSPs),
introduced by Silverman in [6]. LSPs are characterized by
a covariance function that is the modulation in time of an
ordinary stationary covariance function. The optimal kernel
for estimation of the Wigner-Ville spectrum for a certain class
of LSPs is obtained in [7]. Based on this result, we derive the
MSE optimal time-frequency kernel for our model covariance
and we use it to compute an optimal multitaper spectrogram,
[81-[10].

The kernels are parameter dependent and the lack of reliable
inference methods has relegated LSPs and their optimal time-
frequency representation to a theoretical interest. The inference
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method, [11], [12], is based on the separation of the two
factors of the product defining an LSP covariance function, in
order to take advantage of their individual structures. Thanks
to the introduced inference method we obtain a complete
procedure to achieve a MSE optimal time-frequency kernel
from measured data.

Time-frequency features are extracted from the spectral es-
timates and used to feed a neural network classifier. Such clas-
sifiers are suitable for classification based on time-frequency
representations of audio signals, such as speech [13] and
EEG [14]. In [2] an adaptive and localized time-frequency
representation of EEG signals has resulted in improvements
in classification accuracy. However, usually the conventional
spectrogram is the the time-frequency representation input.

The purpose of this paper is to show how the optimal
MSE time-frequency kernel offers a significant improvement
in practical applications, leading to a higher classification
accuracy thanks to the greater quality of the time-frequency
features extracted with the proposed approach. The parameters
estimation on a suitable LSP model for EEG signals allows
the extraction of improved features for classification.

The paper is structured as follows. In section II, we present
the mathematical model of LSPs, the expression for the MSE
optimal time-frequency kernel, the specific model used in the
simulation study and in the EEG data application, and the
classification approach considered. In section III, performance
of the derived spectral estimator is evaluated through a sim-
ulation study. In section IV we present the results of the
classification of the EEG signals, collected within a study
on human memory encoding. The paper concludes with some
comments and directions for further research in section V.

II. METHODS

A. Locally Stationary Processes

Let X (t), t € [To, T¢] C R, be a zero mean stochastic pro-
cess. We say that X (¢) is a Locally Stationary Process (LSP)
in the wide sense if its covariance C(s,t) = E[X (s)X (¢)*]
can be written as

con=a(*FH) re-n=aw-rn) @)
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with s,t € [Ty, T¢] C R, ¢(n) a non-negative function and
r(7) a normalized (r(0) = 1) stationary covariance function.
When ¢(n) is a constant, (1) reduces to a stationary covariance
and this definition therefore includes stationary processes as
a special case. The wide range of possibilities for the choice
of the functions offers an advantageous flexibility to model
time-varying data. Clearly not every choice is suitable, since
we recall that a function C(s,t) is a covariance if and only if
it is positive semi-definite.

B. Mean Square Error optimal kernel

The Wigner-Ville spectrum of an LSP is defined as

W(t,w) = /o:o E [X (t n %) X (t _ g)} e Tdr ()
=q(t) - Fr(w),

where F f denotes the Fourier transform of the function f,
[6], [7]. The corresponding ambiguity spectrum is defined as

A0, 1) = /Oo E [X (t+ %) X (t - g)} em0dr  (3)

— 00

= Fq(0) - r(7),

and any time-frequency representation member of the Cohen’s
class can be expressed as

We(t,w) = / / A0, 7)D(0, 7)e T drde  (4)

where ® is an ambiguity kernel, [15]. The general expression
for the optimal ambiguity kernel in the mean square error
(MSE) sense was derived in [16] as

_ Fa(6)Pir()
PO = F @ PP + FRP @) F R0 5

and in [7] the authors derived the MSE optimal kernel for LSP
where the factors of the covariance are Gaussian functions.
Efficient implementation and estimation are based on mul-
titapers, [7], [8], [10], i.e. a weighted sum of windowed
spectrograms, as
T

K
Wel(t,w) =E [Z ay
k=1 (6)

with weights ay, and windows hy(t), & = 1...K. The
weights and windows are derived from the solution of the
eigenvalue problem

/ X (s)hj(t — s)e”“5ds

/OO U (s, t)h(s)ds = ah(t), 7
where the rotate(I C:i)me-lag kernel is Hermitian and defined as

Uol(s, 1) = W <S’;rts — t) , (8)
with o

U(t, 1) = / (6, 7)e'0dp. )

With a few o, that differ significantly from zero, the multitaper
spectrogram solution is an efficient solution from implemen-
tation aspects.
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Fig. 1. Example of MSE optimal eigenvectors (a) and eigenvalues (b),

corresponding to multitapers and weights of the MSE optimal time-frequency
estimator for the model (10) and parameters (L, aq, bq, cq, crr) =(150, 800,
0.25, 250, 3000).

C. Stochastic model for the simulation study and the EEG
data application

In this study we choose the functions ¢(n) and r(7) as

+ s

. t
q(n) =L+ aq-exp (70(1 (n— bq)2 /2) with n =

r(T) = exp (—% . 72> with 7 =1 —s (10)
with b, € [To,T¥], Tp and T} initial and final times and
¢r > ¢q > 0. The latter assumption is necessary to assure
that the resulting covariance is positive semi-definite. This
choice of functions, introduced in [12], is motivated by EEG
data application, IV. The parameter L is modeling additive
stationary noise on the actual LSP and is useful to model data
with heavy disturbances.

Thanks to (5) we are able to compute the parameter depen-
dent optimal kernel ®((6,7) for the introduced model (10),
as

|A(0, )7
A0, 7)|* + B(6,7)

(I)0<077-) = (11)
with

A0, 7)]7 = |Fq(0)|r()]?

2ra? e [2 _ 2 epr?
= <L250(0) + ™ -5 +2a,L 150(9)6 29Cq> e 1
Cq Cq

and

B(0,7) = (Flr[*(0))(F | Fq*(7))

where 0 denotes the Dirac delta function.

D. Pattern recognition neural networks

Pattern recognition networks are feed-forward networks that
can be trained to classify inputs according to target classes.
The input and target vectors are usually divided into three
sets: training, validation and testing. After the training of the
neural network, the validation phase is necessary to ensure
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Fig. 2. Boxplots of the MSE on 100 simulation for the spectral estimators
considered, all with parameters optimized. Average MSE are 3.8, 2.6, 1.9
and 1.9, for HANN (N,, = 32), WOSA (K = 10), the MSE optimal
time-frequency estimator derived from LSP true and LSP HATS parameters
respectively.

that the network is generalizing and to stop training before
over-fitting, and the testing phase consists of a completely
independent test of the network. As in standard networks used
for pattern recognition, [17], in this study we consider a two-
layer feed-forward network, with a sigmoid transfer function
in the hidden layer, 20 hidden neurons, and a softmax transfer
function in the output layer.

III. EVALUATION IN SIMULATION STUDY

We present a simulation study to evaluate the method
performance in terms of MSE of the derived optimal spectral
estimator. We consider 60 realizations of a LSP with covari-
ance function (10), sampled in 256 equidistant points during
the time interval [15,7¢]=[0,0.5] seconds. The vector of true
parameters used to simulate the data is (L, aq, by, ¢4, ¢,)=(100,
600, 0.2, 1000, 10000). The inference method, HAnkel-
Toeplitz Separation (HATS), [11], [12], is used to estimate
the parameters A = (L, aq, by, ¢q) and p = (c;).

Based on the parameter estimates, the MSE optimal kernel
and corresponding multitapers are calculated as described in
section II-B and II-C. An example of resulting multitapers
and weights are presented in Figure 1. Two other classical
estimators are considered for comparison: the single Hanning
window spectrogram (HANN) and the Welch method, with
50 % overlapping Hanning windows (WOSA), [18]-[21].
For a fair comparison of the performance of the different
estimators, these two methods are optimized to give the
smallest possible total MSE. For HANN, the window length
N, € {16,32,64,128,256} is optimized, while for WOSA
the optimized parameter is the number of windows used
K € {1,2,..,16}, where the total length of all included
windows is 256.
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Fig. 3. Mean square error for the MSE optimal time-frequency estimator as
function of the number of realizations used to produce the model parameter
estimates with HATS. Red lines are 95 % confidence intervals.

The expected value of the MSE (mMSE) is computed
as the average of 100 independent realizations. In Figure 2
we present boxplots of the MSE achieved with the different
methods in the 100 simulations. The optimal mMSE for
HANN and WOSA are 3.8 and 2.6 respectively, obtained
respectively with N,, = 32 for HANN and K = 10 for
WOSA. The mMSE value for the MSE optimal estimator with
the true parameters or with parameters estimated with HATS is
1.9. Notice that not only the spectral estimate obtained using
MSE optimal kernels achieves the best mMSE as expected,
but using the true parameters or those estimated with HATS
leads to the same result.

To test how the number of realizations used to estimate the
model parameters with HATS affects the results in the time-
frequency domain, we study the variation of the MSE of the
spectral estimator based on parameter estimates obtained using
a different number of realizations N € {1,5,10,25,50}. In
Figure 3 we present the resulting mMSE, computed as average
on 100 independent simulations, as function of the number
of realizations used, with corresponding 95 % confidence
interval.

IV. CLASSIFICATION OF EEG SIGNALS

The data considered has been collected within a study
on human memory retrieval, conducted at the department of
Psychology of Lund University, Sweden, during the spring
of 2015. The EEG signals have been measured from one
subject participating in the experiment, during 180 trials of a
memory recognition task, in which the subject had to associate
a presented word with a target picture. Each picture presented
belongs to one of three categories: “Faces”, “Landmarks”,
”Objects”. For each category, 60 different trials were per-
formed and we restrict to the coding phase. The measurements
were recorded from channel O1 (International 10-20 system),
as primary visual areas can be found below the occipital
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Fig. 4. Three random EEG signals, after 70 Hz low-pass filtering, corre-
sponding to three different trials of a memory task, from each category: (a)
"Faces’; (b) Objects’; (c) ’Landmarks’.

lobes, and downsampled to frequency 512 Hz. Each time series
considered then has 256 equidistant samples during the time
interval [0, 0.5] seconds (Figure 4).

For each class, 40 out of the total 60 realizations are used
to infer on the parameters L, aq, bq, cq, ¢, of the LSP model
covariance (10). The estimated parameters are used to compute
the optimal kernels and multitapers for each class. The spectral
estimates obtained with the MSE optimal estimator, HANN
(N, = 32) and WOSA (K = 10), are used to extract time-
frequency features, where each feature is the spectral power at
each time-frequency point in the time interval [0, 0.5] seconds
and frequency up to 40 Hz.

The remaining 20 realizations are used for independent
testing in the network. The model parameters are re-estimated
from these independent data-sets and the consequent spectral
estimates computed. Classification accuracy is based on these
data-sets. Since the accuracy of the network varies with the
initial parameters, e.g. the subsets of the data chosen for
training and validation, each network is retrained 10 different
times. The random partition in 40 realizations for training and
20 for testing is repeated 10 times as well, and the test is
repeated with the different random sets of testing realizations.
In figure 5 we present an example of MSE optimal multitapers
and weights of the MSE optimal time-frequency estimator for
a random set of realizations from the three categories. In tables
I, II, IIT we report the confusion matrices resulting from the
classification of the EEG signals, using the time-frequency
features from the three spectral estimators compared.

Clearly, accuracy of the classification is a feedback for how
good are the features used. As expected, the use of better time-
frequency features results in improvement in classification
accuracy, with a total classification accuracy of 80 % for the
proposed MSE optimal time-frequency estimator, compared to
57.4 % and 50.3 % of HANN and WOSA respectively.
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Fig. 5. Example of MSE optimal multitapers and weights of the MSE optimal
time-frequency estimator for a random set of realizations from the three
categories: (a) multitapers and (b) weights for 'Faces’; (c) multitapers and
(d) weights for *Objects’; (e) multitapers and (f) weights for *Landmarks’.

TABLE I
CONFUSION MATRIX USING FEATURES OBTAINED WITH THE SINGLE
WINDOWED SPECTROGRAM (HANN). TOTAL CLASSIFICATION ACCURACY

57.4 %.
| | Actual class
= Faces  Objects  Landmarks
*3 " Faces 1408 420 370
B Objects 241 957 550
£ | Landmarks | 351 623 1080

V. CONCLUSION

In this paper we have illustrated an approach leading to im-
provement in classification accuracy of EEG signals measured
during a memory encoding task. This result has been achieved
by estimating an MSE optimal time-frequency estimator and
extract features to feed a pattern recognition neural network
classifier. The proposed approach leads to a total classification
accuracy of 80 %, compared to 57.4 % and 50.3 % obtained
with the classical single Hanning windowed spectrogram and
the Welch spectrogram respectively.

Future extensions of this research will consider a multi-
dimensional model to deal with correlated signals and an
extended classification study, including several subjects.

TABLE II
CONFUSION MATRIX USING FEATURES OBTAINED WITH WOSA. TOTAL
CLASSIFICATION ACCURACY 50.3 %.

Actual class

= Faces  Objects Landmarks
S . Faces 1054 581 527
] Objects 485 961 470
E © | Landmarks 461 458 1003
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TABLE III

CONFUSION MATRIX USING FEATURES OBTAINED WITH MSE OPTIMAL

ESTIMATOR. TOTAL CLASSIFICATION ACCURACY 80 %.

| | Actual class
Faces Objects Landmarks
1092 37 149
232 1912 53
676 51 1798

Faces
Objects
Landmarks

Predicted
class
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