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Abstract—In this paper, we propose a new beam training
framework to cope with mobility scenarios in millimeter wave
communications. When a position of the mobile changes, the base-
station needs to perform beam training frequently to track the
time-varying channel, which leads to significant training overhead
in radio resources. In order to alleviate this problem, we propose
a “dedicated beam training” which serves only users under high
mobility. Combined with conventional common beam training, the
proposed dedicated beam training can allow the high mobility
users to acquire channels with a small number of training beams
exploiting the location information of the target user. The optimal
selection of the training beams is formulated such that the lower
bound of the angle of departure (AoD) estimate is minimized over
the beam codebook indices given the estimate of the previous AoD
state. Our numerical evaluation demonstrates that the proposed
beam training scheme can maintain good channel estimation
performance with less training overhead than the conventional
beam training protocol.

I. INTRODUCTION

The next generation wireless communication systems aim
to achieve 1000 fold increase in throughput over the current
4G LTE systems [1], [2]. As a means to achieve this re-
lentless goals, wireless communications using millimeter wave
(mmWave) band has received much attention in recent years.
One well-known drawback of mmWave communications is the
significant attenuation of the signal power due to high free
space path loss. In particular, the overall path loss is severe
when the signal goes through rain and foliage or is blocked by
obstacles, building, and human body. Recently, various studies
have been conducted to overcome these limitations [1], [2]. The
key enabler in these studies is the high directional beamforming
using a large number of antennas to direct the signal power in
the desired direction.

In order to support high directional beamforming, the base-
station should acquire the channel state information (CSI) in
the downlink. The beam training protocol for acquiring the
CSI is as follows. First, the base-station sends the training
beams one at a time to the different direction. Then, each
user estimates its own CSI which is the composite of the
direction of departure (DoA), the direction of arrival (AoA),
and the channel gain, using the received signals [3]–[5]. The
acquired CSI is then sent back to the base-station and used

in computing the beamforming (precoding) matrix for the
subsequent transmission of data symbols [6].

In the widely used beam training method so called beam
cycling, the base-station transmits N training beams at the
equally spaced directions. In order to support all users in
all possible locations, the base-station should transmit a large
number of beams. In this type of training referred to as common
beam training, the training beams are shared by all scheduled
users so that the training period should be sufficiently large to
acquire reliable CSI for all users. This issue becomes more
serious concern in mobility scenario where the location of
mobiles is changing. In this case, clearly, beam training should
be performed more frequently for the reliable channel tracking
[4]. Note that the frequent use of common beam training is not
a cost-efficient way since the small number of high mobility
users in general very small.

An aim of this paper is to present a new beam training techni-
que to support mobility scenarios in mmWave communications.
The key ingredient in the proposed scheme is the dedicated
beam training to serve high mobility users. When a user of high
mobility is detected, the base-station transmits the dedicated
beams to the user. Since the dedicated beams are intended for
a particular user, the base-station can exploit the information
on the user’s location in selecting the beams. Specifically, using
the knowledge on the AoD reported by the user, the base-station
selects beam indices from the beam codebook that achieve
the best channel estimation performance. Towards this end,
minimizing (the lower bound of) variance of the estimation
error on AoD over possible beam combinations. By employing
a small number of dedicated beams and using a small number
of resources allocated to the user, significant reduction in the
training overhead can be achieved while maintaining good
channel estimation performance.

It is worth comparing our approach with the previous beam
tracking approaches [7]–[11]. In the previous studies, the AoD
estimate is obtained from the channel tracking algorithm and
then, a single beam is placed in the direction of the user. Since
the user cannot estimate the channel accurately using the single
beam-based measurement so that the seamless tracking is not
possible when the angle of beam deviates from the true AoD. In
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Fig. 1. Structure of common beam training

contrast, our scheme searches for the optimal placement of mul-
tiple beams generating the best channel estimation performance
so that more robust and stable channel tracking is possible. We
will show this in simulations section.

II. SYSTEM MODEL

In this section, we discuss the system model for mmWave
communications. We also discuss the procedure for conventio-
nal common beam training. In the conventional beam cycling
scheme, the base-station transmits the beams one at a time at
T equally partitioned directions between [−π/2, π/2]. Trans-
mission of T beams is repeated every Tc seconds (see Fig. 1).

A. Channel Model

Consider a mmWave MIMO system with Nb base-station
antennas and Nm user antennas. Adopting the angular-domain
channel representation, the multi-input multi-output (MIMO)
channel from the base-station to the ith user can be expressed
as [5]

Hi,p =

L∑
l=1

αi,p,la
(i)
m (θmi,p,l)a

H
b (θbi,p,l) (1)

where L is the number of multi-paths, p is the pth beam training
period, αi,p,l is the l-th path gain and θbi,p,l and θmi,p,l are
the l-th path AoD and AoA, respectively. We assume that the
channel Hi,p does not change during the beam training period.
The beam steering vectors ab(θbl ) and am(θml ) are given by [5]

ab(θ) =
1√
Nb

[1, e
j2πdθ
λ , e

j2π2dθ
λ , · · · , e

j2π(Nb−1)dθ

λ ]T

am(θ) =
1√
Nm

[1, e
j2πdθ
λ , e

j2π2dθ
λ , · · · , e

j2π(Nm−1)dθ
λ ]T

where d is the distance between the adjacent antennas and λ
is the wavelength. Note that θ = sin(φ) where φ ∈ [−π2 ,

π
2 ] is

a physical angle for AoD and AoA.

B. Conventional Common Beam Training

The signal received by the ith user for the tth beam trans-
mission and the pth beam training period is given by

yi,p,t = WH
i,pHi,pftsi,t +WH

i,pni,p,t (2)

= WH
i,pHi,pftsi,t + n′i,p,t (3)
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Fig. 2. An illustration of the proposed dedicated beam training.

where WH
i,p is the combiner operation applied by the ith

user, ft is the beamforming vector used for the tth beam
transmission, ni,p,t is the Gaussian noise vector ∼ N(0, σ2

nI).
Since si,t is the known symbol, we simply set si,t = 1. The
conventional beam cycling uses the beamforming vectors given
by ft = a(b) (−1 + 2(t− 1)/T ), where t = 1, ..., T . Collecting
the measurements corresponding to T beam transmissions, we
obtain the measurement matrix given by

Yi,p = WH
i,pHi,pF+Ni,p, (4)

where Yi,p = [yi,p,1, ...,yi,p,T ], F = [f1, ..., fT ], and Nt,p =
[n′i,p,1, ...,n

′
i,p,T ]. Using the angular channel representation in

(1), we have

Yi,p =
L∑
l=1

αi,p,lW
H
i,pa

(i)
m (θmi,p,l)a

H
b (θbi,p,l)F+Ni,p. (5)

The user acquires the channel matrix Hi,p by jointly es-
timating the channel gains (αi,p,1, ..., αi,p,L), the AoDs(
θbi,p,1, ..., θ

b
i,p,L

)
, and the AoAs

(
θmi,p,1, ..., θ

m
i,p,L

)
. Since joint

estimation of the parameters is computationally demanding, an
approach exploiting the sparse nature of mmWave channels has
been popularly used to reduce the computational complexity of
the parameter estimation [12].

III. PROPOSED BEAM TRAINING FOR MOBILITY SCENARIO

Fig. 2 depicts the example of the proposed beam training
protocol. We assume that each user is occupying different
radio resources. First, the base-station monitors the extent of
mobility for all scheduled users and detects high mobility users
(user 3, 4, and 5 in the example). If the high mobility user is
detected, then, the dedicated beam training mode is activated
and the dedicated beams are transmitted to the designated users

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1845



between the common beam periods. As illustrated in Fig. 2,
relatively small number of beam transmissions are enough for
this purpose. The dedicated team transmission is repeated every
Td seconds. In order to track the time-varying channel, the
frequency of dedicated beam training should be higher than
that of common beam training (i.e., Tc > Td). Based on the
received signals, the user estimates the CSI and feeds it back to
the base-station. Given the estimate of previous CSI, the base-
station searches for the best dedicated beams for the next beam
training period.

A. Dynamic mmWave Channel Models

As mentioned, channel estimation process consists of the
estimation of the AoD, AoA, and channel gain. These channel
parameters are time-varying when the users are moving in
mobility scenario. The temporal behavior of θbi,p,l and θmi,p,l can
be modeled by the discrete-time Markov random process des-
cribed by the conditional probability of the current AoD/AoA
state given the previous AoD/AoA state. One example of the
conditional probability Pr(θbi,p,l|θbi,p−1,l) for AoD is Gaussian
distribution, i.e., N(θbi,p−1,l, σ

2
AoD). Note that the parameter

σ2
AoD is proportional to mobility of the user. Hence, in practical

systems, we can empirically map the average speed of the
user to the appropriate value of σAoD. While the AoA can
be modeled similarly, the temporal variation of channel gain
αi,p,l can be described by the autoregressive (AR) model, that
is, αi,p,l = aαi,p−1,l + σa

√
1− a2up, where a is the AR

parameter, σ2
a is the variance of the AR process, and up is

the normal Gaussian process.

B. Beam Transmission and Channel Estimation

In the dedicated beam training, the base-station finds the
beamforming vectors optimized for each user. Let Fi,p =
[fi,p,1, ..., fi,p,T ] be the beamforming matrix for the ith user and
pth beam training cycle, then the base-station finds the optimal
beamforming matrix F∗i,p accounting for the conditional chan-
nel distribution given the previous CSI reported by the user.
Since the beamforming matrix is optimized for each user, the
required number of beam transmissions T is small. When the
optimized beamforming matrix F∗i,p is used, the measurement
matrix in (5) can be expressed as

Yi,p =
L∑
l=1

αi,p,lW
H
i,pa

(i)
m (θmi,p,l)a

H
b (θbi,p,l)F

∗
i,p +Ni,p. (6)

Note that the channel parameters {αi,p,1, ..., αi,p,L},
{θbi,p,1, ..., θbi,p,L}, and {θmi,p,1, ..., θmi,p,L} are estimated by ap-
plying the Bayesian filter (e.g. extended Kalman filter [9])
using the sequence of observations {Yi,1, ...,Yi,p}. We can
also estimate the CSI independently for each received vector
using the compressed sensing recovery algorithms [12].

C. Beam Selection

In this subsection, we discuss the optimal beam placement
for the dedicated beam training. Our goal is to choose the best

beamforming vectors from the beam codebook D maximizing
the channel estimation performance of the target user. The beam
codebook D enumerates a variety of beamforming vectors with
different beam-widths and with different steering directions. We
first consider the beam design for single path scenario (L = 1)
for simplicity but our result can be readily extended to the
multi-path scenario by employing all beams optimized for each
path. In the single path scenario, the received vector can be
represented by

Y
(p)
i = (W

(p)
i )Ham(θmi,p,1)αi,p,1a

H
b (θbi,p,1)Fi,p +N

(p)
i . (7)

Channel estimation performance can be quantified by analyzing
the estimation errors for θbi,p,1, θmi,p,1, and αi,p,1. Since the im-
pact of AoA information on the beam selection is insignificant,
we assume that the AoA information is perfectly known by the
base-station. Then, by letting W

(p)
i = am(θmi,p,1) in (7), we

have

Y
(p)
i = αi,p,1a

H
b (θbi,p,1)Fi,p +N

(p)
i . (8)

In order to find the performance metric for beam selection, we
derive the lower bound of the variance of the channel estimation
error. First, the Cramer Rao Lower Bound (CRLB) for joint
estimation of θbi,p,1 and αi,p,1 is given by

CRLB(ξ) > I−1 (9)

Ii,j = −E

[
∂2 lnP (Y

(p)
i |θbi,p,1, αi,p,1)
∂ξ∗i ∂ξj

]
(10)

where ξ = [α∗i,p,1, αi,p,1, θ
b
i,p,1]

T and I is the Fisher informa-
tion matrix. Once the estimate of θbi,p,1 is obtained, we can
estimate the channel gain by projecting Y

(p)
i onto the space

spanned by aHb (θbi,p,1)Fi,p. Thus, it suffices to consider the
CRLB for θbi,p,1 [13]

CRLB(θbi,p,1) = [I−1]3,3 (11)

= [Q− 2Re{PCPH}]−1 (12)

where Q = 1
σ2

∥∥∥∥αi,p,1FTi,p ∂(a∗
b (θ

b
i,p,1))

∂θb

∥∥∥∥2,

P = 1
2σ2αi,p,1F

T
i,p

∂ab(θ
b
i,p,1)

∂θb
a∗b(θ

b
i,p,1), and

C =
(

1
2σ2

∥∥αi,p,1FTi,pa∗b(θbi,p,1)∥∥2)−1. Since the CRLB is the
lower bound for the estimator of deterministic parameters, we
average CRLB over the distribution of θbi,p,1. The distribution
of the current AoD state given the previous AoD state can be
obtained from the Baysian filter. Assuming that the distribution
of θbi,p,1 follows Gaussian distribution with the mean θ̂bi,p,1 and
the variance σ̂2

AoD, the average CRLB is

AvgCRLB =

∫
CRLBk,l(θ) ·N(θ̂bi,p−1,1, σ̂

2
AoD)dθ.

The final step of the beam selection is to find out the index
minimizing AvgCRLB over all T combinations of beam
indices from D. Although this this process requires to high
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search complexity in general, when we use only small value of
T , the complexity can be made resonally small. In particular,
when we use dual beams (i.e., T = 2), we can search for the
beam indices for fi,p,1 and fi,p,2 over two dimensional grid. The
search complexity can be further reduced by using the fact that
the optimal beamforming pair is mostly symmetric with each
other with respect to the previous AoD estimate θ̂b(t − 1).
Hence, we can perform one dimensional grid search and apply
the look-up table for mapping the previous AoD estimate and
variance to the beam indices.

D. Proposed Beam Tracking for Multi Path Scenarios

So far, we have presented the new beam tracking strategy
for single path scenarios. We can easily extend the proposed
scheme for the scenario where there exist L multi paths in
mmWave channels. If the AoDs associated with each path
are well separated in angular domain, it is possible to apply
the proposed tracking scheme derived for single path for each
individual path while ignoring the existence of other paths. In
this scenario, the base-station transmits two training beams for
each of L path, requiring 2L beam transmissions in total. Since
we search for the AoD estimate within the restricted range,
we can separate each path from each other without negligible
performance loss. When the different paths are clustered in
angular domain, we have to find joint estimate of AoDs based
on the received signals generated from 2L beam transmissions.
The optimization for designing 2L beamforming vectors can be
performed for each path. The estimation of L values of AoD
can be performed via compressed sensing techniques such as
orthogonal matching pursuit (OMP) [14].

IV. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the proposed
beam training method. We consider the base-station and the
mobile equipped with Nb = Nm = 32 antennas. We assume
uniform linear arrays (ULAs). We use 32 beams for the com-
mon beam training. OMP algorithm is used to estimate the AoA
and AoD, which are generated based on the statistical model
we described in Subsection III-A. The range of AoD between
[−π/2, π/2] is discretized into 128 angular bins, respectively.
On the other hand, we use the dual beams (N = 2) for the
dedicated beam training. The beam codebook used for the
proposed beam selection includes the steering vectors at 128
uniformly quantized directions. The OMP algorithm is also
used for AoD estimation.

Fig. 3 shows the bit error rate (BER) performance as a
function of training overhead, where the training overhead is
the ratio of the number of symbols used for training to the total
number of symbols in the frame. We generate 1000 frames to
evaluate the performance of dedicated beam training. A frame
contains 4000 symbols which include symbols for training
and data transmission. We assume that the channel changes
over symbol time. i.e., the channel of the nth symbol Hn is

0 10 20 30 40 50 60 70 80

Training overhead(%)

10-3

10-2

10-1

100

B
E

R

Conventional beam cycling(
AoA

=0.001)

Dedicated beam training(
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=0.001)

Existing beam tracking(
AoA

=0.001)

Conventional beam cycling(
AoA
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Existing beam tracking(
AoA
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Fig. 3. BER versus training overhead.
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Fig. 4. MSE versus time slot for AoD estimation

generated by

Hn =
L∑
l=1

αn,lam(θmn,l)ab(θ
b
n,l)

H

where nth channel states of lth path are follows channel gain
αn,l = ραn−1,l + vt

√
1− ρ2, AoD θbn,l ∼ N(θbn−1,l, σ

2
AoD)

and AoA θmn,l ∼ N(θmn−1,l, σ
2
AoA). We evaluate the perfor-

mance of 1) the common beam training, 2) the dedicated
beam training, and 3) existing beam tracking [9]. The ex-
isting beam tracking method exploits only one beam pair
and estimates the AoD and AoA based on extended kalman
filter (EKF). All of the methods transmit Nt = 32 beams
in the beginning of the frame. While the beam cycling be
repeated every Tc symbols, the dedicated beam training and the
method in [9] are performed every Td symbols. The remaining
symbol slots are allocated for data symbols where binary
phase shift keying (BPSK) modulation is used. The precoding
matrix for the data transmission is the matrix V obtained from
taking the singular value decomposition of estimated channel
Ĥn =

∑L
l=1 α̂n,lam(θ̂mn,l)ab(θ̂

b
n,l)

H . We consider the scenario

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1847



with L = 3 and SNR = 20dB. We set ρ = 0.9999 and
σAoD = σAoA = 0.001. Although the variation of the channel
states looks very slow, since the channel states vary across
hundreds symbols or more, these are changing quite fast. For
example, if the beam training repeated every 400 symbols,
the variation of channel states in the adjacent beam training
corresponds to ρ′ ≈ 0.96 and σ′AoD = σ′AoA = 0.02(≈ 1.14◦).

We compare the training efficiency of the common beam
training and the proposed beam training. With Tc = 4000,
the training overhead of common beam training corresponds to
0.8%(= Nt/400 ∗ 100). As Tc decreases to Tc = 400 and 50,
training overhead increase to 8% and 64%. In contrast, since
the dedicated beam training only transmits 2L training symbols
instead of Nt beams, the training overhead corresponds to only
2.1% and 12.8% with Td = 400 and 50. Even if the existing
tracking method with only one beam pair has lower training
overhead with same Td, the BER performance of existing beam
tracking is saturated. This is because the estimate of the existing
beam tracking quickly outdated. One can know this through
simulation result in Fig. 4. Note that the training overhead
of the proposed method would be much lower at same BER
performance. Such substantial performance gain is attained
since the proposed scheme uses the beam directions chosen to
bring the optimal AoD estimation quality while the common
beam training uses equally spaced beams without using the
information on the previous AoD.

Fig.4 shows the tracking performance of proposed met-
hod and existing beam tracking method. We set the number
of antennas Nb = Nm = 32, SNR = 20dB, and the
standard deviation of AoA and AoD to σp = {0.01, 0.02}
(≈ {0.57◦, 1.14◦}). Even if the variation of the AoD and
AoA seems too small, since the duration of a time slot is a
few millisecond, the AoA and AoD actually change at high
speed in this scenario. We repeated the 1000 simulations to
compare the proposed method with existing beam tracking
method [9]. In order to compare our scheme with existing beam
tracking method, we select the beam pair for both user side
and base-station side, and find the AoA and AoD using OMP.
The proposed method shows much better tracking performance
rather than the method in [9]. By using two beams to track
the AoD, the dedicated beam training performs much more
stable tracking performance. Since the existing beam tracking
method exploit only one beam pair, while the estimation error
keeps rapidly increasing, the proposed method has much better
estimation accuracy.

V. CONCLUSIONS

In this paper, we have presented the novel beam technique
suitable for the mobility scenario in mmWave communications.
To this end, we proposed the dedicated beam training which
transmits beams for a particular user. We demonstrated that
the beam selection algorithm using the information on user’s
location and channel, the dedicated beam training can reduce

the training overhead significantly while maintaining good BER
performance.
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