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Abstract—The problem of sampling and reconstruction of
band-limited graph signals is considered in this paper. A new
sampling and reconstruction method based on the idea of error
and erasure correction is proposed. We visualize the process of
sampling as removal of nodes akin to introducing erasures, due
to which the graph syndromes of a sampled signal gives rise to
significant values, which otherwise would be minuscule for a
band-limited signal. A reconstruction method by making use
of these significant values in the graph syndromes is described
and correspondingly the necessary and sufficient conditions
for unique recovery and some key properties is provided.
Additionally, this method allows for robust reconstruction i.e.,
reconstruction in the presence of few corrupted sampled nodes
and a method based on weighted ¢; - norm is described.
Simulation results are provided to demonstrate the efficiency of
the method which shows better mean squared error performance
compared to existing methods.

Index terms— Graph signal processing, Graph syndrome,
error correction, Sampling and reconstruction, Robust recon-
struction.

I. INTRODUCTION

The limitation of the traditional discrete signal processing
(DSP) in handling complex irregular structured data which are
continuously being generated from various physical sources
such as social networks, biological networks etc, [1], [2] has
led to the growth of other alternative fields; a predominant field
among them being the graph signal processing (GSP) [3]. It is
well known that graph provides a natural representation of the
data in many of the above mentioned areas and GSP broadly
refers to processing of signals that reside on the vertices by
taking into consideration the underlying graph topology. In this
paper, we consider an important problem in this emerging area
of GSP namely the sampling and reconstruction, and propose a
new method based on the idea of error and erasure correction,
which besides reconstruction, has the additional advantage of
robust reconstruction i.e., reconstruction in the presence of
outliers in the sampled signal.

In traditional DSP, which deals with discrete-time signals,
it is well known that sampling and reconstruction is an
important problem whose goal fundamentally is to recover
high dimensional signal (i.e., reconstruction) from a low di-
mensional signal (i.e., from small subset of samples). Further,
it is well established through the classical Nyquist-Shannon
sampling theorem that band-limitedness is an essential key
pre-requisite for sampling without significant information loss.
Similarly, even in GSP, band-limitedness forms an important
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pre-requirement for sampling and analogous to traditional
DSP, band-limitedness of graph signals in GSP is defined with
the support of graph Fourier transform (GFT) [3]. Several
new techniques over the recent past are being proposed to
address the various aspects of sampling and reconstruction
of band-limited graph signals. Sampling set selection i.e.,
choosing the appropriate subset of vertices, which facilitates
unique and stable reconstruction is an important step and the
works such as [4] - [6] (and references there-in) addressed this
problem and described techniques for obtaining an appropriate
choice of sampling set. While [4] proposed an approach for
obtaining the sampling set for unique recovery, [5] proposed
a greedy approach for stable reconstruction. Whereas these
approaches require the graph Fourier basis, [6] described a
computationally efficient method for determining the cut-off
frequency and choosing a sampling set using only the graph
variational operator such as graph Laplacian. Various methods
for reconstruction are also proposed for example in [5] - [9].
While [7] - [9] described an approach based on appropriately
designing the graph shift-invariant filters that are similar to
traditional linear time-invariant filter, [5], [6] focused on con-
sistent reconstruction' and used the frame-theoretic methods
borrowed from [10]. All these reconstruction methods assume
that the sampled signal is uncorrupted and reconstruction
suffers in the presence of large outliers. To add robustness
against these errors, [11] proposed an approach based on graph
total variation minimization.

In this paper, we revisit this problem of sampling and
reconstruction and provide an alternative method based on
graph syndromes. We visualize the process of sampling as
removal of a subset of nodes akin to introducing erasures in
coding theory. The removal of nodes causes disturbance to
the GFT spectrum. The graph syndrome which corresponds
to the disturbance in the stop-band region is captured via the
corresponding matrix referred as graph parity check matrix.
The various relationships between the graph syndromes, the
sampled signal and the reconstructed signal is outlined and
based on which the necessary and sufficient condition for
the unique reconstruction is provided. Furthermore, we show
that the proposed reconstruction is consistent and is identical
to the frame-theoretic method outlined in [6] for the same
given sampling set. Now, any larger outliers on the sampled

IConsistent reconstruction, in brief refers to reconstruction without chang-
ing the observed variables. For more details, readers may refer to [10]

897



2018 26th European Signal Processing Conference (EUSIPCO)

signal which is analogous to errors also causes disturbance
and gets captured in the graph syndrome; a method based on
weighted-¢;-norm [12] is described for robust reconstruction.
Simulation results are provided to corroborate the methods
discussed in this paper and also to compare the performance
with the existing schemes. The results show a similar sampling
set selection compared to [5] and a better mean squared
error (MSE) performance compared to [11] in case of robust
reconstruction.

II. PRELIMINARIES

In this section we provide the general graph notations and
briefly describe the band-limitedness and existing sampling
and reconstruction of band-limited graph signals. This is then
followed by the definition of graph syndromes.

A. Graph signals

Let G = (V, ) denote a known, connected, undirected and
weighted graph consisting of N nodes indexed by set V =
{1,2,..., N} and connected by edges £ = {(¢,7,w;;)}, 4,7 €
V, where w;; denotes the weight of the edge between ith and
the j** node and w;; = 0. The adjacency matrix W is an
N x N matrix with [W]; ; = w; ;. Due to the assumption
of undirected graphs, W € S™. The degree of the i** node
can be defined as d; = Zjvzl[W]Z] and the degree matrix
D = diag(dy,ds,...,dyn). The important key matrix, graph
Laplacian is defined as L. = D — W. The graph shift operator
S € S, where [S];; can be non-zero only if i = j or
if (i,j) € £. S captures the local structures of the graphs
and choices for the graph shift operator are usually either
the Laplacian matrix or the adjacency matrix [2], [3]. A
graph signal is a scalar value assigned on each vertex or
alternately, it is a function f : V — R. Since S is a
symmetric matrix, it admits the eigenvalue decomposition
S = [uy,...,uy]diag(A1, ..., A\n)[uy, ...,uy] . The eigenvec-
tors and eigenvalues, U = {uy,..,ux} and {A,...,An}
provide a notion of frequency in the context of graphs [3].
Now, the GFT and the inverse GFT of the graph signal f can
be defined as f = UZf and £ = UF respectively.

B. Band-limitedness and Sampling

1) Band-limited graph signal: A graph signal f is said to
be w-bandlimited if f; = 0 for all i with |\;] > w. Let R =
{1,2,...,7} and the complimentary set R® =V \ R, where r
denotes the number of eigenvalues that are less than w. Now,
we can express the GFT matrix as U = [Uyg |Uyrc], where
Uyr and Uy,rc are matrices of dimension N X7 and N XN —r
respectively. Now, using Uyr we can easily express the w-
band-limited signal f as [6]

f= Zuiﬁ = Uprfr. (1)
i=1
The set {uy,uy, ..., u,.} spans a vector space which is referred
as Paley-Wiener space [13] denoted by PW,,(G) and consists
of all w-band-limited signals. In the following section, we
briefly outline the sampling and reconstruction techniques of
a graph signal f € PW,,(G).
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2) Sampling and reconstruction in PW,,(G): A. Unique-
ness of Sampling Set:
Let S C V denote the sampling set with cardinality, i.e.,
|S| = d, and the complement sampling set S¢ = V' \ S. The
uniqueness set on PW,,(G) is defined as follows [13].

Definition 2.1: Sampling set S is a uniqueness set for the
space PW,,(G) if and only if f5 = f% implies f' = £* for all
1,2 ¢ PW,(G).
Here fs denotes the sampled signal i.e., it contains the
elements corresponding to the sampling set S. Let Ly(S¢)
denote the space of all vectors in RV that are zero at all
places corresponding to S. The following result provides the
necessary and sufficient condition for uniqueness of sampling
set S for any signal f € PW,,(G) [4], [6].

Lemma 2.2: S is a uniqueness set for PW,,(G) if and only
if PW,,(G) N Ly(S€) = {0}.
B. Reconstruction and Sampling set Selection:
Let S; be a matrix whose columns are indicator functions for
S and the sampling operator 87 : RY — R? [6]. The sampled
sub-vector fs = SJf. A well known method for consistent
reconstruction is achieved based on the frame operator theory
described in [10] by making use of the following expression
(51, [6]

frw = Upr (U2 Usr) 1 UL, £s )

Upw

where the sub matrix Ugr = S:‘?UVR.

For optimal sampling set selection, various methods as
stated in Section I have been proposed. Among them a
key method is based on choosing appropriate rows of Uyr,
since from the above expression it is quite evident that the
performance depends upon Usk. Hence, in the existing works
such as [5], Uy is used for choosing the optimal sampling set
S based on various objectives such as minimum reconstruction
error etc. For a comprehensive summary of the objectives
and the corresponding optimality criterion on Usg, interested
readers may refer to [6, Table IIJ.

In the following section, we introduce the notion of graph
syndrome which provide an alternative means for sampling
and reconstruction by using the matrix Uygc. This new
framework as shall be described later in Section III, in
addition to reconstruction, it facilitates robust reconstruction
i.e., reconstruction in the presence of outliers in the sampled
signal.

C. Graph Syndrome
The graph syndrome of a graph signal f is defined as

my = Ul of. (3)

Now, we have the following property on (Ui ,c)
Proposition 2.3: Assume f # 0, then f € N(Uch) (.e.,

null space of Uflsc) if and only if f € PW,,(G).

The proof is easy and is clearly evident from the definitions

of PW,,(G) and GFT, and hence is not elaborated here. The

above proposition implies that graph syndrome my = 0 for a

perfect w-band-limited signal. Now, one can easily draw the
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parallels between the above definitions and the error correction
codes [14]. It can easily be seen that the matrices Uy and
Uy rc are analogous to generator and the parity check matrix
respectively. Hence, in this context of graphs, we refer to Uyr
and Uyc as the graph generator matrix and graph parity
check matrix respectively and correspondingly m¢ as graph
syndrome of the graph signal f. The following section describes
the process of sampling and reconstruction based on these
graph syndromes.

III. SAMPLING AND RECONSTRUCTION USING GRAPH
SYNDROMES

In this section we first describe the reconstruction of the
sampled signal using the graph syndromes; followed by this
the conditions for unique reconstruction and sampling set
selection is discussed. Later it is extended for robust recon-
struction.

A. Graph Syndromes based Reconstruction

The sampled signal fs can equivalently be expressed as
Sifs = f— S§f (4)

where Sg is a diagonal matrix of order N x N with diagonal
entries of one’s corresponding to S¢ and zero’s corresponding
to S. Notice the difference between S; and Sy ; unlike Sy,
S4 contains one’s corresponding to S and zero’s corresponding
to S¢ and further the columns corresponding to all zeros are
removed. Also, notice that the vector SGf € Ly(S€) ie., it
contains zeros corresponding to sampling nodes in S. Now
using (3) the graph syndrome of the above equation can be
estimated as

m¢, = Ul 5cSafs. )

Substituting (4) in the above equation, we can express the
graph syndrome as

my, = —ULcS§E (6)
= U efse (7

for (6) Proposition 2.3 is used, while for (7) the structure
of S% is used. U e and fsc contains the columns and
the elements corresponding to the complementary sampling
set SC respectively. Now, observe that S% = S%S% and
by substituting it in (6), the vector SGf = —(UXc)fmy,,
where (.) denotes the Moore-Penrose Pseudoinverse. Again
substituting for m¢; from (5), S%f =

—(UHe e) UL cSafs. Now, using this expression and (4),
the reconstructed signal using graph syndrome approach fos
can be expressed as

fos = Safs + St =Sufs — (Ugcre) UPrcSafs
= (Iy — (Ugere) ' Upre)Safs. ®)
Ucs

Notice the difference between (2) and (8); while (2) relates the
reconstruction signal and the sampled signal using Uy and
Usr, (8) relates using Uyzc and Ugcrc. Now, we have the
following property on reconstruction with graph syndromes.
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Proposition 3.1: The reconstruction obtained using the
graph syndromes approach is consistent and is identical to
(2) i.e., fGS = fpw.

We only provide an outline of the proof here. From (7) it is
clear that only fsc is estimated using the graph syndromes
approach and hence fs = fs implying consistent reconstruc-
tion. For the reconstruction equivalence, it can be shown that
Ugs = Upw using matrix manipulations. The manipulation
steps goes along the lines as provided in [15, Section V.C] and
hence is not elaborated here. |

In the following, we provide the necessary and sufficient
conditions for unique reconstruction and briefly describe a
method for sampling set selection with this graph syndromes
approach.

1) Uniqueness of Reconstruction and Sampling set Se-
lection: The following theorem provides the necessary and
sufficient condition for the unique reconstruction with this
approach.

Theorem 3.2: For any signal f # 0 and f € PW,,(G), the
sampling set S is a uniqueness set if and only if UgcRc is
full rank.

Proof Assume S is a uniqueness set and recall that S§f €
L5(8¢). Thus from Lemma 2.2, S§.f ¢ PW,,(G) which further
implies from Proposition 2.3 that my, # 0, and hence UgcRc
must be full rank (see (7)). Conversely, if ULc ¢ is full rank
then it can easily be observed that matrix Ugg is also full
rank. Hence, using (8) it is easy to notice that for any f}g = 12 s
f‘gs = i'QGS which by definition 2.1 implies S is uniqueness
set. |

The above theorem leads the following observation in terms of
the graph syndrome; for unique recovery the graph syndromes
must satisfy the two conditions i) for any f € PW,,(G), mg, #
0, ii) for any f',£* € PW,,(G) and f' # f*, my # mg.

2) Sampling set selection and discussion: Similar to using
graph generator matrix i.e., Uy for selection of best sampling
set with certain objectives and optimality criterion on Usg
as mentioned in Section II, the graph parity check matrix
U{ch can be used for choosing the sampling set. One can use
identical objectives and optimality criterion on Ugcc as listed
in [6, Table II] to obtain the sampling set. Further, the same
greedy algorithms as described in the existing works such as in
[5] can be employed here for choosing the optimal sampling
set. However, it is important to observe one key difference
between using Usg and Ugcrc for sampling set selection;
while using Usg one obtains the sampling set S, by using
Ugcre we obtain the complementary sampling set S€.

Now, for the same given objective, due to matrix equiva-
lence (i.e., Ugs = Upy/), one may expect to obtain similar
sampling set by employing either the graph generator matrix
Uyr or the graph parity check matrix U{;IRC. It is important
to note that even though we have mentioned similar sampling
set, they are not identical due to adoption of sub optimal
greedy algorithm; as would be demonstrated in Section IV.
Recall, from Section II that the dimensions of matrices Uy
and Uyre are N x r and N x (N — r) respectively. Thus, if
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r > N/2 then it will be computationally advantageous to use
U{,{Rc for sampling set selection, else one can use Uyx.

In addition to providing identical performance as suggested
by Proposition 3.1 in the absence of outliers, the proposed
graph syndrome based framework scores over the frame-
theoretic approach by providing robust reconstruction in the
presence of outliers.

B. Robust Graph Syndromes based Reconstruction

The above described reconstruction inherently trusts the
sampled signal fs i.e., it assumes that all samples of fs are
uncorrupted. However, when large errors are present, these
disturbances influences or affects the reconstruction process.
Robust reconstruction aims to minimize the influence of these
disturbances by separating out these errors from the sampled
signal. Let e denote the vector of size d x 1 containing these
large errors which we assume it to be sparse and £ denote
the set of erroneous locations with |£| = K. The erroneous
sampled signal can be expressed as

ts =fs +e. ©)
Using (5) the syndrome of ts can be expressed as
my, = Ul cSuts = UlrcSa(fs +e)

= mg +me, (10)

where the error syndrome me, = fUHRc eg, U?Rc and eg

denotes the columns and elements of Uy,zc and e respectively
corresponding to the error location set £. Unlike S¢ which is
known, the error location set £ is unknown and hence the
reconstruction described above is not directly applicable. Fur-
ther, due to non-separability of the contribution to syndrome
corresponding to sampling and errors, the reconstruction has
to be jointly addressed. We borrow the idea of weighted-¢;
-norm minimization [12] and propose to solve the following
optimization problem for joint reconstruction:

min |Bx|, subject to mg, = Uflpcx
X

Y

where B is a diagonal matrix of size N x N referred as
weighting matrix whose diagonal elements corresponding to
locations S contains one, while at locations corresponding to
SC€ it has a very low value, say o < 1. Suppose if the model
is assumed to have some background noise then the equality
constraint has to be replaced with [my, — Ullexlr, < e
By solving the above optimization problem we shall obtain
the vector x = S§f + Sgé. Since SN E = {0}, by
keeping a threshold on x, one can easily obtain the elements
corresponding to f sc and ég.

IV. SIMULATION RESULTS

In this section we present the numerical results of the
proposed method and compare it with the existing methods.
For the experiments, we use a random sensor graph comprising
of N = 100 nodes which is generated using the GSPBOX
[16]. In all the experiments we generated a band-limited
graph signal by assuming » = 30 and hence, the size of
Uypr = 100 x 30 and Uyprc = 100 x 70.
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In the first simulation, we compare the sampling set ob-
tained with the two approaches; using the graph generator
matrix and graph parity check matrix i.e., with Uy and Uy rc
respectively. In both the cases we keep the optimality criterion
as maximizing the minimum eigenvalue of the sampled matri-
ces Usr and Ugcrc respectively and use the greedy algorithm
provided in [5, Algorithm 1] for choosing the sampling set.
Recall from Section III-A2 that by using the graph parity check
matrix Uy,zc, we obtain the set S¢ and subsequently, the
sampling set is obtained using V \ SC. Fig.1 shows the graph
topology of 100 nodes and the sampling nodes obtained with
the two approaches. From the figure notice that except for
few sampled node locations (in this case two nodes) the other
sampling node locations obtained with both the approaches
are identical. This small difference in sampling set is due
to the usage of sub-optimal greedy algorithm. Further, it is
important to notice that the two locations even though are
different, they are in close vicinity. Although the results are
not provided here, we observed similar behavior for other
optimality criterion listed in [6, Table II]. Thus, as mentioned
in Section III-A2 depending upon the size of r, one to can
employ either the graph generator matrix or the graph parity
check matrix for sampling set selection.
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& 5>y & 02
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Fig. 1. Comparison of sampling nodes obtained with the graph generator
matrix and graph parity check matrix approach. The sampled nodes obtained
with the graph generator approach is depicted using black ’o’, whereas with
the graph parity check approach it is depicted with red **°.

In the next simulation, we compare the reconstruction per-
formance in the presence of outliers. K = 5 outliers are added
to the sampled signal and Fig. 2 shows the MSE reconstruction
performance as a function of the sampling ratio of the three
approaches; the robust graph total variation regularization of
[11], the graph syndrome based reconstruction (i.e., using
just (8)) and the robust graph syndrome based reconstruction
i.e., by solving (11) mentioned as RGTVR, GSR and RGSR
respectively in the figure. For the sake of comparison, the re-
construction obtained with the Oracle method is also provided.
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In oracle method, the reconstruction is achieved by assuming
the error or the outliers locations to be known, which sort
of provides a lower bound. Notice from the figure that as
the number of sampling nodes increase, the MSE reduces
corresponding to all three approaches, which is along the
expected lines. Now, between the three methods, RGTVR and
the proposed RGSR reconstructs by taking into consideration
the outliers and hence shows better performance than GSR.
In RGTVR, contrary to the proposed RGSR method, several
performance sensitive hyper parameters are required to be
chosen appropriately. In spite of choosing these parameters
for the best performance by exhaustive search, one can see
from the figure that RGSR performs better than tuned RGTVR
and is closer to the oracle approach, thus demonstrating better
robustness to outliers.

0.5 —

,

0 i i i T
0.35 0.4 0.45 0.5 0.55

Sampling ratio

Fig. 2. MSE vs sampling ratio comparison of reconstruction in the presence
of outliers.

V. CONCLUSION

By visualizing the sampling of a graph signal as removal of
nodes, which in turn can be seen as introducing erasures, the
paper suggests a new method for graph signal sampling and
reconstruction. Linking the graph syndrome to the band-stop
spectrum, which manifests as a disturbance in the sampling
process, a reconstruction method has been put forward. Fur-
ther, it is shown that the sampling set must be chosen such that
the sub graph parity check matrix must be full rank for unique
reconstruction. Additionally, this framework inherently allows
for robust reconstruction by treating outliers as errors and a
method based on weighted ¢;-norm minimization is arrived
for this purpose. From the simulation results and the theory
discussed in the paper, it can be concluded that the proposed
graph syndrome based method has better robustness to outliers
while reconstructing the graph signals.
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