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Abstract—Recently it has been shown that the one-dimensional
discrete phase retrieval problem may not have always a causal
solution for certain input magnitude data, but it has been proved
that the extended form of the one-dimensional discrete phase
retrieval problem has always a causal solution within the same
conditions. In this work we are looking for the minimum length
solution for one-dimensional discrete phase retrieval problem.
The Non-uniform Discrete Fourier Transform based approach is
introduced and experimental results are also presented.

I. PHASE RETRIEVAL PROBLEMS

One classical signal recovery task is the reconstruction of
a Fourier transform pair from data on either or both domains.
There are many examples of reconstruction of Fourier trans-
form pair in optics, electrical engineering, quantum physics,
and astronomy [1]. Within this class, the problem of phase
retrieval is to reconstruct the signal from only magnitude
measurements [2]:

Problem 1: Given X̃ ≥ 0, find x such that its Fourier
transform X = F{x} satisfies |X| = X̃ .

In practice one deals with sampled data. In case of one-
dimensional sequences the Discrete-Time Fourier Transform
is used:

Problem 2: Given X̃(ωk) ≥ 0, k ∈ K ⊂ Z, find x(n) such
that:

X(ω) =
∞∑

n=−∞
x(n)e−jωn

satisfies |X(ωk)| = X̃(ωk) .
If we assume that x(n) is causal and of finite length, the

Discrete Fourier Transform (DFT) is typically implemented.
The main one dimensional discrete phase retrieval (1-D DPhR)
problem can be stated as follows:

Problem 3: Let X̃(k), k = 0, 1, . . . , N − 1 a sequence of
nonnegative numbers, which will be called the input magnitude
data. A solution of 1-D DPhR problem is a complex signal of
length M (M ≤ N ) x(n), n = 0, 1, . . . , N−1, with x(n) = 0
for n = M,M +1, . . . , N − 1, such that its Fourier transform

X(k) =
N−1∑
n=0

x(n)e−j 2πkn
N , k = 0, 1, . . . , N − 1. (1)

satisfies
|X(k)| = X̃(k) (2)

for all k = 0, 1, . . . , N − 1.
Note that input magnitude data X̃(k) correspond to ωk =

2πk
N , where k = 0, 1, . . . , N − 1. Also the methods using

autocorrelation from circular autocorrelation require M ≤
(N − 1)/2 [3], [4].

One can obtain a solution to 1-D DPhR problem by finding
the zeros of z-transform of autocorrelation, Hilbert transform,
computation of cepstral coefficients [5]–[7], but the most
common approaches are iterative transform algorithms, which
alternate between time and frequency domains [4].

Depending on the given input magnitude data X̃(k) and
the signal length M , the problem may or may not have a
solution. Indeed, a solution to the 1-D DPhR problem exists
if certain conditions are satisfied by the input magnitude data,
namely the corresponding trigonometric polynomial must be
nonnegative [3].

Even though we cannot find (or there does not exist) a
solution satisfying (2), we can use optimization methods to
search that best approximates (2) in some sense. The following
least-squares problem or empirical risk minimization [8] is the
most well known:

Problem 4: Find x(n), a discrete signal of length M (M ≤
N ), such that to minimize

min
x(n)

N−1∑
k=0

[X̃2(k)− |X(k)|2]2 (3)

where X̃2(k) are called the measurements, and X(k) are given
by (1) for all k = 0, 1, . . . , N − 1.

Note that Problem 4 has always solution, but Problem 3
may have solution or not. When Problem 3 has a solution,
this verifies also Problem 4. Solutions to both Problem 3 and
Problem 4 are subject to ambiguities [9].

Nevertheless, a solution to Problem 4 which is not a solution
to Problem 3 gives the magnitudes of the DFT of the solution
that are different from the input magnitude data. Unfortunately,
small changes in input magnitude data can sometimes provide
large changes in the phase of the solution of 1-D DPhR
problem [10]. Consequently we may not have always strong
arguments that the solution obtained to Problem 4 is indeed
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the one we are looking to solve 1-D PhR problem, as stated
by Problem 3.

Another doubt is related to the length of the solution of
Problems 3 and 4 respectively. Problem 4 has always a
solution of length M (2M − 1 ≤ N ); Problem 3 may have
a solution only of length larger than M ; this situation may
appear because the Fourier transform has not been sampled
according to the length of the sequence and time-domain
aliasing is present in the input magnitude data [11].

We have reformulated the 1-D DPhR problem into an
extended form of the 1-D Discrete Phase Retrieval problem.
In the suggested approach, the DFT has been computed in a
number of points twice the number of input magnitude data.
We recall that oversampling of Fourier transform magnitude
by 2 has been proposed and analyzed in [12].

In the extended form of the 1-D Discrete Phase Retrieval
problem the input magnitude data represent the specified
values of the DFT’s magnitude for even indexes, and the values
of the DFT’s magnitude for odd indexes have to be found.
This approach does not change the input magnitude data of
Fourier transform; indeed it preserves the input magnitude data
at given frequencies ωk = 2πk

N . Moreover, this approach avoids
the time-domain aliasing [13]. Recent work has proved that
extended form of the 1-D Discrete Phase Retrieval problem
has always a solution that can be obtained using the error-
reduction algorithm [14].

It follows that we can obtain a solution to 1-D PhR problem
by keeping fixed the input magnitude data; this solution has
a finite length and the length may vary according to the input
magnitude data. The goal of this work is to state the issue
of the minimum length solution for one-dimensional discrete
phase retrieval problem and to introduce an approach to find
this minimum length solution.

The paper is organized as follows. Section II discusses
the minimum length solution of 1-D PhR problem, then the
NDFT based approach is proposed in Section III. Experimental
results are presented in Section IV. Section V concludes our
achievements.

II. MINIMUM LENGTH SOLUTION OF 1-D PHR PROBLEM

In this section we begin with an example, then we define
the minimum length solution of 1-D PhR problem. We recall
that x(n) needs to be zero for n ≥ N/2 in order to avoid
aliasing in computation of |X(k)|2 [15].

Example 1: [13]
Let N = 5 and

X̃(k) =

{
3, k = 0;

1, k = 1, 2, 3, 4.
(4)

Note that input magnitude data X̃(k) correspond to ωk = 2πk
5 ,

where k = 0, 1, 2, 3, 4.
Any attempt to solve 1-D DPhR problem for these input

magnitude data is unsuccessful [16].

The solution of the extended form of the 1-D Discrete Phase
Retrieval problem [13] obtained after convergence is:

x(n) =

 1.4 n = 0;
0.4 n = 1, 2, 3, 4;
0 n = 5, 6, 7, 8, 9,

It follows that we do not have any solution of length 3,
but we have a solution of length 5. The question for these
input magnitude data (4) is whether the minimum length of
the solution is 5 or 4.

For the general case we have:
Definition 1: Let X̃(ωk), k = 0, 1, . . . , N − 1 a sequence

of positive numbers, which will be called the input magnitude
data. A minimum length solution of 1-D DPhR problem is
the smallest integer L and an associated discrete causal signal
x(n) of length L for which its Fourier Transform :

X(ω) =
L−1∑
n=0

x(n)e−jωn (5)

satisfies
|X(ωk)| = X̃(ωk) (6)

for all k = 0, 1, . . . , N − 1.
As one can see, in relation with Problem 2, here

K = {ωk = 2πk/N |k = 0, N − 1}.

Two main issues can be distinguished in relation with
minimum length solution of 1-D PhR problem:

1) selection of L;
2) L has being set, how to verify whether there is a solution

of length L to 1-D PhR problem?
There are many search algorithms that may help the selection
of L. In the following we shall focus on the second issue.

III. NDFT BASED APPROACH

Difficulties may appear when one tries to evaluate the
Fourier transform or its inverse. This is needed for the work
therein when one would like to make use of certain iterative
algorithms. The most widely used algorithms for phase re-
trieval are iterative alternating projection algorithms pioneered
by Gerchberg-Saxton [17] and Fienup [18].

Generally, the Fourier transform is computed using DFT in
almost all numerical applications. Suppose that DFT is calcu-
lated on certain P points. A first requirement is P ≥ 2L− 1
due to causality constraint [4]. Second, the DFTs on P points
usually do not give the magnitude for ωk = 2πk

N , except for
the situation when N divides P ; this is seldom the case. Thus
for computational reasons, the DFT calculation to get the
spectrum must be replaced by NDFT (Nonuniform Discrete
Fourier Transform) evaluation [19].

The Fourier transform can be computed for any length of a
sequence and there are no special constraints on the length of
the sequence for the computation of the inverse of the Fourier
transform. This is not anymore the case of DFT and NDFT. For
computing of the DFT or of the NDFT and of their inverses,
we need to have the same number of samples: for the sequence

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 476



and for the transform. It follows that we have to add new
supplementary frequencies for the computation of the NDFT,
besides the settled frequencies ωk = 2πk

N , (k = 0, 1, . . . , N −
1) for which the input magnitude data are known.

The selection of the supplementary frequencies is a major
issue of the minimum length solution NDFT based approach
for the 1-D DPhR problem. Note that such supplementary
frequencies have been used in the case of extended form
of 1-D DPhR problem. However, there it has been natural
to choose as supplementary frequencies for ωk = 2π(2k−1)

2N ,
where k = 0, 1, . . . , N − 1.

In the case of the minimum length solution NDFT based
approach for the 1-D DPhR problem, we propose to set
the supplementary frequencies by dividing the fundamental
interval [0, 2π) in equal parts.

In the very rare cases, when the supplementary frequencies
may overlap the settled frequencies, we have to add a certain
fixed frequency after division of the fundamental interval.
This modification of the supplementary frequencies avoids the
singularity of NDFT matrix. However, when we select the
supplementary frequencies, if possible, the computational load
of the NDFT and of its inverse should be not considered. Our
suggestions to change the supplementary frequencies are the
following:

1) add π/2;
2) add the mean of the first nonzero settled and supple-

mentary frequencies.
Our experiments show that the second suggestion works better,
at the expense of the computation complexity.

The NDFT based approach for 1-D DPhR problem is
described in Figure 1. This algorithm is almost a standard
iterative procedure for phase retrieval, having several particu-
larities:

• Fourier transform has been substituted by NDFT:

X(zk) =
P−1∑
n=0

x(n)z−n
k , (7)

where zk = ejωk , k = 0, 1, . . . , P − 1;
• the initialization of Fourier transform magnitudes with

input magnitude data is done only for settled frequencies;
• at every iteration, after NDFT computation and only for

settled frequencies, the Fourier transform magnitudes are
substituted by the input magnitude data;

• for supplementary frequencies the Fourier transform mag-
nitudes are modified only by NDFT computation.

To verify the convergence of the iterative procedure, we
modified the error function used by error-reduction algorithm
such that the error is computed between the specified input
magnitude data and the corresponding NDFT magnitudes:

ENDFT
p =

1

N

N−1∑
k=0

∣∣∣X̃(ωk)− |X̂p+1(k)|
∣∣∣2 . (8)

The following example will help to understand the mecha-
nism of the NDFT based approach for the 1-D DPhR problem.

Input: I (number of iterations);
N (number of input magnitude data);
X̃(ωk), k = 0, N − 1
(input magnitude data);
ωk = 2πk/N , k = 0, N − 1
(settled frequencies);
L (length of the signal x(n));
P = 2L− 1, (length of the NDFT);

Set: ωk, k = N,P − 1
(supplementary frequencies);
X̃(ωk) = 0, k = N,P − 1
(initial magnitude - supplementary frequencies);
∠X̂1(ωk) = 0, k = 0, P − 1;
(the initial estimate of the phase);

Compute: X1(k) = X̃(ωk), k = 0, P − 1 ;
for p = 1, I xp(n) = NDFT−1

P {Xp(k)}, n = 0, P − 1;
x̂p+1(n) = xp(n), n = 0, L− 1;
x̂p+1(n) = 0, n = L,P − 1;
X̂p+1(k) = NDFTP {x̂p+1(n)}, k = 0, P − 1;
∠X̂p+1(k) = arg X̂p+1(k); k = 0, P − 1
(the new estimate of the phase)
Xp+1(2k) = X̃(ωk) exp[∠X̂p+1(2k)],
k = 0, L− 1;
Xp+1(2k + 1) = X̂p+1(k), k = L,P − 1;

ENDFT
p+1 = 1/N

∑N−1
k=0

∣∣∣X̃(ωk)− |X̂p+1(k)|
∣∣∣2 ;

end;
Output: ∠X̂I+1(k) - (final estimate of the phase).

Fig. 1. NDFT based approach for 1-D DPhR problem

Example 2: Example 1 revisited
In the following we shall look for a solution x(n) of length 4
such that

X(ω) =
3∑

n=0

x(n)e−jωn (9)

satisfies

|X(ωk)| =

{
3, ωk = 0;

1, ωk = 2πk/5, k = 1, 4.
(10)

Since the length of the NDFT must be P = 2L − 1 = 7, we
need 2 supplementary frequencies. We select the following
supplementary frequencies: ω5 = 2π/3, and ω6 = 4π/3, by
dividing the interval [0, 2π] in 3 equal parts. Thus the points zk
used to compute the NDFT are as follows: zk = ej2πk/5, k =
0, 4, z5 = ej2π/3, and z6 = ej4π/3. Consequently the NDFT
matrix is not singular.

Our experiments show that we get a solution for the 1-
D DPhR problem with the NDFT based approach for the
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input magnitude data given by (10) of minimum length 4.
The solution is:

x(n) =


0.2702 + 0.5592j, n = 0;
0.0723 + 0.3332j, n = 1;
0.2393 + 0.9865j, n = 2;
0.2829 + 0.9938j, n = 3;
0, n = 4, 5, 6.

Thus we answer to the question raised at the end of the
Example 1: for the input magnitude data given by (4), the
minimum length of the solution is 4.

IV. EXPERIMENTAL RESULTS

The solution to the Problem 3 exists when certain conditions
are satisfied [3]. For instance, it has been shown there that if
the mean of input magnitude data is rather close to zero, there
are really small chances to get a solution to Problem 3. If
the input magnitude data are severely biased toward positive
values, then the direct method of the 1-D DPhR has a solution
almost always. For this reason, the minimum length solution is
more needed when the input magnitude data has a mean rather
close to zero than severely biased toward positive values.

In this section, the input magnitude data will be randomly
uniform selected between [0,1]. Also we wait 1000 iterations
for ENDFT

p to reach the convergence level of -100 dB. From
our experience we found that for small lengths and in almost
all cases, 1000 iterations and convergence level of -100 dB are
enough to distinguish whether the error-reduction algorithm
converges.

A. Minor variation of Example 2

The first set of experiments is a minor variation of Exam-
ple 2. Our goal is to see what happens:

1) when the input magnitude data are varying;
2) when the supplementary frequencies are not following

the recommendations from Section III.
We have followed the same framework as in the case of
Example 2, however the input magnitude data have been
randomly selected. We have generated 1000 sequences of
input magnitude data with length 7. For every one of these
magnitude data we run the NDFT based approach for the 1-D
DPhR problem. We wait 1000 iterations for ENDFT

p to reach
the convergence level of -100 dB.

The first goal was to test if there is a minimal solution of
length 5 or not. In this part of the experiment we kept the
supplementary frequencies as ω5 = 2π/3 and ω6 = 4π/3. We
have found solutions of length 4 for the 1-D DPhR problem for
around 90% of the trials. For some of input magnitude data,
the minimum length solution might be 3, for other might be 4.
However, the minimum length solution was 5 for about 10%
of the trials. Consequently, the minimum length solution varies
according to the input magnitude data.

In the second part of the experiment we modified randomly
supplementary frequencies and the input magnitude data. We
have found that the the associated discrete causal signal x(n)

TABLE I
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 5)

L 3 4 5

No 288 630 82

TABLE II
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 7)

L 4 5 6 7

No 197 569 259 5

to the minimum length solution differs when the supplemen-
tary frequencies are changed. Moreover, the convergence or
the divergence depend on the choice of the supplementary
frequencies. Indeed, for some supplementary frequencies and
input magnitude data, the error function may not converge.
When it does not converge, ENDFT

p may have oscillations.
To conclude, the selection of supplementary frequencies is

a sensitive issue and in the following we shall strictly follow
the recommendations from Section III.

B. Number of minimum length solutions

In this set of experiments the goal was to evaluate the
number of minimum length solutions for different number of
input magnitude data. We have generated 1000 sequences of
input magnitude data with length N , where N was equal to
5, 7, 9, 11, 13, and 15.

For every one of these input magnitude data we have first
verified whether they have solution to the Problem 3 using the
DFT criterion from [3]. If they have solution to the Problem 3,
then we automatically set M as the minimum length solution.

If the input magnitude data have no solution to the Prob-
lem 3, then we run the NDFT based approach for these input
magnitude data and for L = M + 1. We wait 1000 iterations
for ENDFT

p to reach the convergence level of -100 dB. If
the convergence level is reached, then the minimum length
solution is set M + 1.

If the input magnitude data have no solution to the Prob-
lem 3 and no minimum length solution of M+1, then we run
the NDFT based approach for these input magnitude data and
for L = M + 2. We wait 1000 iterations for ENDFT

p to reach
the convergence level of -100 dB. If the convergence level is
reached, then the minimum length solution is set M + 2.

The same procedure was applied for L = M+2 to L = N .
In this way we found the number of minimum length

solutions for every N and for every input magnitude data.
The results are presented in Tables I to VI. The selection of

supplementary frequencies has followed the recommendations
from Section III. We just note that situations when adding
frequency is needed can be easily detected, by verifying
whether a settled frequency and a supplementary frequency
are equal.
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TABLE III
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 9)

L 5 6 7 8 9

No 125 573 258 14 30

TABLE IV
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 11)

L 6 7 8 9 10 11

No 68 399 369 140 24 0

TABLE V
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 13)

L 7 8 9 10 11 12 13

No 36 242 362 332 31 1 0

TABLE VI
NUMBER (NO) OF MINIMUM LENGTH SOLUTIONS FOR DIFFERENT L

(N = 15)

L 8 9 10 11 12 13 14 15

No 22 192 446 287 48 5 0 0

To conclude this second set of experiments, the main one-
dimensional discrete phase retrieval may have not solution of
length M , but we can find a (minimum length) solution having
the same input magnitude data by assuming that the solution
has length larger than M .

V. CONCLUSION

The presence of time-domain aliasing in DFT is certain
when the sequence has infinite length. Time-domain aliasing
might be also present in DFT when the frequency sampling
has not been performed adequate. Moreover, the magnitudes
of the DFT contain a nonlinear processing of the DFT. Conse-
quently, when present, the time-domain aliasing penetrates the
magnitudes of the DFT in nonlinear fashion and it is difficult
to distinguish.

If the number of the measurements of the DFT’s magnitudes
is less than the length of the sequence that generated the
magnitudes, then the one-dimensional phase retrieval problem
cannot provide a solution having the appropriate length. In
such case, we need an approach to find first the length of the
solution, and then the solution.

In this work our goal was to state the issue of the minimum
length solution for one-dimensional discrete phase retrieval
problem and to introduce an NDFT based approach to find this
minimum length solution. We found that the one-dimensional
discrete phase retrieval problem has always a solution of mini-
mum length and we have shown how to find this solution using
the NDFT approach. Unfortunately the associated solution to

the minimum length may change according to the selection of
the supplementary frequencies.

In this work we did not develop optimal procedures for
optimal frequencies selection. We did not look for optimal
selection of the minimum length parameter. These might be
the goals of future work.
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