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Abstract—In this paper, we propose a low-complexity greedy
recovery algorithm which can recover sparse signals with time-
varying support. We consider the scenario where the support of
the signal (i.e., the indices of nonzero elements) varies smoothly
with certain temporal correlation. We model the indices of support
as discrete-state Markov random process. Then, we formulate
the signal recovery problem as joint estimation of the set of
the support indices and the amplitude of nonzero entries based
on the multiple measurement vectors. We successively identify
the element of the support based on the maximum a posteriori
(MAP) criteria and subtract the reconstructed signal component
for detection of the next element of the support. Our numerical
evaluation shows that the proposed algorithm achieves satisfactory
recovery performance at low computational complexity.

I. INTRODUCTION

Sparsity is one of the useful properties used to process
signals arising in many engineering applications. Basically,
a sparse signal can be represented by a small number of
coefficients in an appropriate basis. A decade of research on
compressed sensing (CS) revealed that it is possible to recover
the unknown signals from the measurements obtained from
under-Nyquist sampling if the sparsity is properly exploited by
the recovery algorithm. The theory on CS is well established
in the literature [1] and various recovery algorithms have been
developed for many applications including medical imaging,
wireless localization, channel estimation, Radar signal process-
ing, cognitive radio, and so on [2].

Among a variety of CS recovery algorithms, the l1-norm
minimization methods apply convex relaxation to the computa-
tionally demanding l0-norm minimization for finding a sparse
solution. This approach includes basis pursuit (BP) and BP
denoising (BPDN) [3]. These algorithms still require relatively
high computational complexity so that greedy recovery algo-
rithms have been proposed. The greedy algorithms iteratively
search for the locally optimal estimate of the signal support
(i.e., the indices of nonzero elements in signal vector) in an
iterative fashion so that their computational complexity can be
reduced. The well known greedy algorithms include orthogonal
matching pursuit (OMP) [4], subspace pursuit (SP) [5], and
CoSaMP [6].

While the above methods were developed for the scenar-
ios where the individual measurement vector is processed
independently, we often encounter the scenarios where the
measurement vector is sequentially acquired and the signal

vector to be recovered is time-varying. The assumption widely
adopted in MMV setup is that the support of the signal does not
change over N measurement vectors while the amplitude of the
signal does. The recovery algorithms developed for this setup
include simultaneous OMP (SOMP) [7], convex relaxation [8],
MSBL [9] and sKTS [10]. Unfortunately, the above algorithms
are not suitable for the scenarios where the support of the signal
changes in time continuously. In this setup, the assumption of
common support might be too restrictive so that the recovery
algorithms developed under the assumption of the common
support does not yield good performance due to the model mis-
match. Processing each measurement vector separately would
not be a good choice either in that it does not fully exploit
the temporal structure appearing in the multiple signal vectors.
A few CS recovery algorithms have been proposed to address
this problem [11]–[14] but these algorithms tend to require high
computational complexity. To our best knowledge, the greedy
algorithm for handing this setup has not been developed yet.

In this paper, we propose a new greedy recovery algorithm
which produces the joint estimate of time-varying support and
amplitude of a sparse signal sequentially at low complexity.
We first formulate the signal recovery as statistical estimation
of two random processes; 1) the set of the support indices
and 2) the amplitude of nonzero entries of the signal vector.
We model the temporal structure of the signal support using
the discrete state Markov process and derive the recovery
algorithm, which successively calculates the joint maximum
a posteriori (MAP) estimate of each element of the support
and amplitudes given the residual signal. Note that the residual
signal is obtained by subtracting the effect of all signal elements
detected from the measurement vectors and such greedy signal
recovery is performed sequentially for each measurement vec-
tor. Our simulation results demonstrate that the proposed greedy
recovery algorithm yields better recovery performance than
the existing algorithms while achieving significant reduction
in computational complexity.

II. SIGNAL MODEL

In this section, we present the sparse recovery problem for
dynamically changing sparse signal. The noisy measurement
vector yt ∈ CM can be represented as

yt = Φxt + wt (1)
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where Φ ∈ CM×N is the normalized sensing matrix, wt ∈
CM is the measurement noise and xt ∈ CN is source signal.
We assume that wt is independent and identically distributed
(i.i.d.) Gaussian ∼ CN (0, σ2

wI) and xt is the K-sparse signal,
(i.e., xt has K non-zero elements). The sparse signal xt can be
described by

xt = Λctst (2)

where ct denotes the set of indices in the support, Λct ∈ CM×K

is the matrix constructed by picking the columns specified by
ct from the identity matrix I , and st ∈ CK contains non-zero
elements of xt. For example, a sparse vector [0, 3, 0, 1]T can
be described by ct = {2, 4}, st = [3, 1] and Λct = [e1, e2],
where ek is a vector which has 1 at kth entry and 0 at others.
Hence, the recovery of the signal xt is equivalent to estimating
the two variables; the support set ct and signal amplitude st.
We view these two variables ct and st as stochastic process.
We assume that the support of the signal changes smoothly in
time with certain temporal correlation. Such behavior can be
well modeled by Markov random process. Assuming that each
element of ct behaves independently, the transition probability
p(ct|ct−1) for the support is given by

ct ∼ p(ct|ct−1) =
K∏

k=1

p(ckt |ckt−1) (3)

where ckt represents the kth element of ct. One example of
the transition probability is the distribution which exponentially
decays as the current state gets further from the previous state

p(ckt = m|ckt−1 = n) = C0β
|m−n| (4)

where C0 is a normalization constant and β ∈ (0, 1] is the
model parameter. Note that β indicates the extent of variation of
the support. Smaller value of β means slowly varying support.
The signal amplitude st is modeled by i.i.d. Gaussian with zero
mean and variance of σ2

s .

III. PROPOSED GREEDY RECOVERY ALGORITHM

Recovery of sparse signal xt can be achieved by joint
estimation of the support ct and the signal amplitude st based
on the sequence of measurement vectors y1, y2, ..., yt. The
MAP estimate of ct and st can be obtained by

ŝt, ĉt = arg max
st,ct

p(st, ct|Yt), (5)

where Yt = {y1, y2, ..., yt}. Next, we will present how to find
the solution to (5) using a greedy algorithm.

A. Algorithm Derivation

Using p(st, ct|Y) = p(st|ct,Y)p(ct|Yt), we can write joint
MAP estimation by

ĉt = arg max
ct

max
st

(p(ct|Yt)p(st|ctYt))

= arg max
ct

(
p(ct|Yt)

(
max

st
p(st|ct,Yt)

))
. (6)

Given the support set ct, the signal amplitude st and measure-
ments Yt are jointly Gaussian. Hence, we can show that the
conditional probability p(st|ct,Yt) is also Gaussian, i.e.,

p(st|ctYt) ∼ CN (s̄t, Pt) (7)

where

s̄t = Σ−1
ct ΛH

ct ΦHyt
Pt = σ2

wΣ−1
ct

Σct = ΛH
ct ΦHΦΛct +

σ2
w

σ2
s

I. (8)

Since the maximizer of p(st|ct,Yt) is s̄t, (6) becomes

ĉt = arg max
ct
p(ct|Yt)p(s̄t|ct,Yt). (9)

If you use the logarithm function, (9) can be rewritten by

ĉt = arg max
ct

[log p(ct|Yt) + log p(s̄t|ct,Yt)] . (10)

Using Bayes’ rule, log p(ct|Yt) in (10) can be expressed as

log p(ct|Yt) = log
p(yt|ct,Yt−1)p(ct|Yt−1)

p(yt|Yt−1)
. (11)

From (9) and (11), the MAP estimate ĉt is given by

ĉt = arg max
ct

[log p(yt|ct,Yt−1) + log p(ct|Yt−1)

+ log p(s̄t|ct,Yt)] + C1, (12)

where the terms not related to ct is included in the constant
C1.

Now, we aim to find the expression for log p(yt|ct,Yt−1) and
log p(ct|Yt−1) used in (12). Using the marginalization over st,
the conditional probability p(yt|ct,Yt−1) can be expressed as

p(yt|ct,Yt−1) =

∫
st
p(yt, st|ct,Yt−1)dst

=

∫
st
p(yt|ct, st,Yt−1)p(st|ct,Yt−1)dst

=

∫
st
p(yt|ct, st)p(st)dst (13)

Since st and wt are i.i.d. Gaussian, we have

p(yt|ct, st) =
1

(πσ2
w)M

exp

(
−‖yt − ΦΛctst‖2

σ2
w

)
(14)

p(st) =
1

(πσ2
s)K

exp

(
−‖st‖

2

σ2
s

)
. (15)

Then, p(yt|ct,Yt−1) can be obtained as

p(yt|ct,Yt−1) =c2 exp

(
1

σ2
w

(yHt ΦΛctΣ
−1
ct ΛH

ct ΦHyt)
)

(16)
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where c2 is the term indepedent to ct. The conditional proba-
bility p(ct|Yt−1) can also be obtained from

p(ct|Yt−1) =
∑
ct−1

p(ct, ct−1|Yt−1)

=
∑
ct−1

p(ct|ct−1)p(ct−1|Yt−1) (17)

Using (11), (16) and (17) and , we can express p(ct|yt) as

log p(ct|Yt) = log c3 +

(
1

σ2
w

(yHt ΦΛctΣ
−1
ct ΛH

ct ΦHyt)
)

+ log
∑
ct−1

p(ct|ct−1)p(ct−1|Yt−1) (18)

where logC3 = logC2 + C1. Finally, from (10) and (18) the
MAP estimate ĉt is given by

ĉt = arg max
ct

[
log c3 +

1

σ2
w

(yHt ΦΛctΣ
−1
ct ΛH

ct ΦHyt)

+ log
∑
ct−1

p(ct|ct−1)p(ct−1|Yt−1) + log p(s̄t|ct,Yt)


(19)

Once ĉt is obtained from (19), we can obtain the MAP estimate
of st with respect to ĉt

ŝt = arg max
st

p(st|ĉt,Yt) = Σ−1
ĉt

Λ(ĉt)
HΦHyt (20)

We take a close look at the objective function in (19). The
second and fourth terms in the right hand side can be easily
calculated for the given candidate for ct. The third term needs
summation over all possible states of ct−1, which requires com-
putationally intensive operations. Note that the term p(ct|Yt)
can be recursively updated from p(ct−1|Yt−1) using (18). Even
through we do not know the value of c3, the distribution
p(ct|Yt) can be obtained by normalizing it such that the
distribution is summed to one. In order to find the maximizer
ĉt in (19), we have to search over all possible combinations
of ct. For sparse-K signal xt, the total number of all possible
combinations for ct is

(
N
K

)
, which can require huge search

complexity for large value of N . Hence, we employ the sub-
optimal search strategy that finds the element of ct iteratively.

B. Greedy Recovery of Support

As mentioned, the complexity for solving the equation (19)
is infeasible. Thus, we use the greedy algorithm which finds
the element of ct maximizing the objective function one by
one. The proposed search strategy is inspired by that of the
OMP algorithm. The OMP identifies each element of support
using the approximation that the residual signal contains the
signal with only single nonzero entry. That is, the correlating
and projection operations performed in OMP are optimal if we
consider the support of the size one.

Adopting the spirit of the OMP, we iteratively find each
element of the support ct assuming that the support size is

Algorithm 1 Proposed greedy recovery algorithm

Initialize : r(l)
t = yt,Ω = {}

1: for i = 1 to K... do
2: Select the support index and the corresponding prior

ĉit = arg max
cit

ψ(cit)

3: Update the support set Ω, ŝit and residual r(i)
t

Ω = Ω ∪ ĉit
ŝ

(i)
t = Σ−1

Ω Λ(Ω)HΦHy

r
(l)
t = yt − ΦΛ

ĉ
(l)
k

ŝ
(l)
k

4: Save the p(cit|yt) to exploit in next time step as

p(cit|Yt) = c3 exp
[
ψ(cit)

]
5: end for
6: Selection step: Find approximate MAP estimate as

x̂t = Λ(Ω)ŝ
(K)
t

7: set t = t+ 1 and go to step 1

one. Whenever we detect the element of support, we will
construct the residual signal by subtracting the estimated signal
component from the measurement vector. In order to select the
dominant support index one by one, we assume that the residual
signal vector contain the signal vector with single nonzero
entry. Then, we can show that the second term in the right
hand side in (19) becomes

1

σ2
w

((r
(l)
t )HΦΛctΣ

−1
ct ΛH

ct ΦHr
(l)
t )

=
1

σ2
w

(
φHckt

φckt +
σ2
w

σ2
x

)−1 ∥∥∥φHckt r(l)
t

∥∥∥2

, (21)

where r(l)
t is the residual signal at the lth iteration and φckt is

ckt th column of Φ. In addition, the third term can be evaluated
only over single element of ck. Thus we get

log
∑
ct−1

p(ct|ct−1)p(ct−1|Yt−1)

= log
∑
ckt−1

p(ckt |ckt−1)p(ckt−1|Yt−1) (22)

We can also show that the last term is equal to
(
− log πk |Pt|

)
.

Finally, the objective function for our greedy recovery algo-
rithm is given by

ψ(ckt ) =
1

σ2
w

(
φHckt

φckt +
σ2
w

σ2
x

)−1 ∥∥∥φHckt r(l)
t

∥∥∥2

+ log
∑
ckt−1

p(ckt |ckt−1)p(ckt−1|Yt−1) + log p(s̄t|ct,Yt)

(23)
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Fig. 1. MSE performance

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY

Runtime(s) Complexity order
Proposed Algorithm 1.64 O(KN2)

OMP 0.54 O(KMN)
BPDN 473.8 O(M2N3) [?]

modified CS 507.1 O(M2N3)

Note that the first term of (23) can be found in the objective
function of OMP. Two additional terms are added to reflect the
temporal correlation underlying in the support. Note also that
the update for p(ckt−1|Yt−1) can be obtained by modifying (18)
into

log p(ckt |Yt) = log c3 + ψ(ckt ). (24)

The proposed greedy algorithm is summarized in Algorithm
1. In the each iteration, the proposed method evaluates the
objective function in (23) for each element of ct which has
not been selected until the current iteration. The effect of the
detected element of the support is subtracted from the residual
signal to generate the updated residual signal, i.e.,

r
(l)
t = yt − ΦΛ

ĉ
(l)
k

ŝ
(l)
k , (25)

where ĉ(l)k and ŝ
(l)
k are the support set and signal amplitudes

found until the lth iteration.

IV. SIMULATIONS

We evaluate the recovery performance of the proposed al-
gorithm using simulations. We use the 128 × 256 normalized
i.i.d. Gaussian matrix as a sensing matrix. We adopt the signal
transition model p(ckt = m|ckt−1 = n) = C0β

|m−n| with β =
0.1. The signal sparsity K is set to 20, the support transition
parameter. Table. I provides the complexity of the several
recovery algorithms of interest. We measure the processing
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Fig. 2. Reconstruction rate performance

time needed to perform 1000 repetitions of recovery from the
single measurement vector. We compare the complexity of the
proposed algorithm with that of OMP, BPDN, and modified CS
[11]. Note that the complexity of the proposed greedy algorithm
is much faster than the BPDN and modified CS. Though the
proposed scheme is three times slower than OMP, it can handle
dynamically changing sparse signal.

Fig. 1 and Fig. 2 provide the accuracy of the signal recovery
algorithms. We conduct Monte Carlo simulations where 10,000
measurement vectors are randomly generated and the number of
perfect recovery of support set is counted. MSE is calculated
by E

[
|x− x̂|2

]
and our reconstruction rate is the rate that

the algorithm find the correct support set among 10,000 signal
vectors. The MSE and recovery rate are provided as a function
of SNR. The proposed algorithm achieves the significant per-
formance gain over the existing recovery algorithms including
OMP, SOMP [7], BPDN, modified CS [11]. Note that SOMP is
the algorithm developed for MMV setup and the modified CS
is the sequential recovery algorithms used for the dynamically
changing sparse signal. In particular, we observe that the
performance gap increases for low SNR range. This seems to be
why the proposed algorithm exploits the temporal correlations
in the multiple measurement vectors for recovery effectively.

V. CONCLUSION

In this paper, we have proposed the greedy recovery algo-
rithm for time-varying sparse model. We provided the dynam-
ically changing sparse signal model where the time-varying
support is described by discrete-state Markov process. We
present the greedy recovery algorithm which detects each
element of support set in MAP criterion. Numerical evaluation
show that the proposed algorithm achieves the significant gain
in recovery performance over the existing recovery algorithms.
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