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Abstract—The detection and estimation of transient chirp sig-
nals with unmodeled amplitude envelope and instantaneous fre-
quency evolution is a significant challenge in gravitational wave
(GW) data analysis. We review a recently introduced method
that addresses this challenge using a spline-based approach. The
applicability of this method to the important problem of removing
non-transient chirps in GW data, namely narrowband noise of
instrumental and terrestrial origin, is investigated.

I. INTRODUCTION

The decades long effort to open the gravitational wave
(GW) window in astronomy has now been realized by the
LIGO [1] and Virgo [2] detectors. The GW signals detected
so far [3] have waveforms that can be calculated theoretically,
allowing matched filtering [4] to be used for their detection and
estimation. This approach is inapplicable, however, to GW sig-
nals from astrophysical sources that are unanticipated or that
are difficult to model theoretically. Among such unmodeled
signals — known as GW bursts when they are transient — the
case of chirps is particularly challenging.

Taking the analytic representation, a(t)exp(i¢(t)), of a
signal s(t), one can operationally define s(t) to be a chirp
when the amplitude envelope a(t) and instantaneous frequency
ft) = $(t) evolve adiabatically — f(t) > a/a and f2(t) >
f(t) — relative to the instantaneous period 1/ f(t).

The author has recently proposed a new method [5], called
Spline Enabled Effectively-Chirp Regression (SEECR), to
address the detection and estimation of unmodeled transient
chirps. A direct comparison with a method based on multi-
resolution time-frequency clustering, which is the paradigm
underyling current burst search methods in LIGO [6]-[9],
shows that SEECR has a significantly better performance.

While the focus in the case of GW chirps has mainly been
on transient signals, it is interesting to note that real data
from GW detectors is actually full of very strong non-transient
chirps! These are the myriad narrowband interferences, called
line noise, contaminating the data that arise from diverse
sources such as the power supply (at 60 Hz and harmonics
in the United States) and mechanical resonances. As shown in
Fig. 1, these lines are usually very strong, rising several tens
of dB above the nominal broadband noise floor, and all GW
search methods need to employ some data conditioning step
to mitigate them before any kind of analysis can begin.

In this paper, we provide a condensed review of SEECR
and its performance on transient chirps, followed by a first
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Fig. 1. The estimated sensitivity curve — defined as the square root of the
noise Power Spectral Density — for the LIGO detector at Hanford (red) and
Livingston (blue) showing high power narrowband (line) features. (Image
credit: LIGO Open Science Center.)

investigation of its use in removing lines. The reader can find
a more extensive description of SEECR, and a statistically rig-
orous characterization of its performance on transient chirps,
in [5]. The results presented here are largely independent of
those in [5] and complementary.

II. DESCRIPTION OF THE METHOD

The essential idea behind SEECR is to make no assump-
tions about a(t) and f(t) except that they are smooth. This
requirement is implemented by representing them as mutually
independent splines. Fig. 2 shows a schematic illustration of
how this model is constructed. The signal model is estimated
from the data using a penalized spline fitting procedure.
The splines have continuously adjustable breakpoints that are
optimized [10] using Particle Swarm Optimization (PSO) [11].
Finally, model selection is used to choose the best number of
breakpoints for the splines.

Notation: 5 € RY denotes a row vector with N elements,
and sj, j =0,1,...,N — 1, or [5];, denotes its 4t element.
Where S is a sequence of discrete-time samples of s(t), the
sampling times are denoted by ¢;, + = 0,1,...,N — 1, and
s; = s(t;). A denotes a matrix with the element in its i row
and j*" column denoted by A;; or [A];;. The identity matrix
is denoted by I.
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Fig. 2. A schematic of the signal model used in SEECR. Open circles denote
the data points interpolated by a spline, their respective time coordinates being
the set of breakpoints asssociated with the spline. (¢ denotes the initial phase
of the signal.)

A. Data Model

Let y denote a segment of GW detector output, sampled
uniformly with a sampling frequency f;. Under the null and
alternative hypotheses, denoted by Hy and H; respectively,

_ n ; Ho
Y = \s5+m

Hp M
where 5 is a GW signal and 7 is a realization of noise. Without
loss of generalization, the noise 7 can be assumed to be drawn
from a zero mean, unit variance iid Normal process (i.e., white
noise) with E[n;n;] = d;;.

Let a(t;@,7,) denote the spline for a(t), where 7, € RM
are the breakpoints,

M—-1

at;®@T) = Y aBik(tTa) 2

=0

and B, ;(t;7,) is a B-spline function [12] of order k. Since
B-splines have compact support, a(t;@,7,) = 0 for t ¢
[Ta,O,T(LM—l ], where Tayi = [711]13

Let f(t;7,7¢) be the spline corresponding to f(t), where
7; € RE and 7 € RE denote the breakpoints and correspond-
ing instantaneous frequencies that the spline must interpolate.

With 7, 7,, and 7; denoted collectively by 0, the signal
model is given by,

s(tisa,0,¢0) = a(ti;a,Tq)sin(¢p(ti; v, 7s) + ¢o) » (3)

o(t:7.7)) ; ST )
s USTF = t / /— —
Jr @t f(57,7f), < Tam—
Let Xy and X; denote matrices given by
[Xl(a) + 11Xy (g)bﬁn = Bj,k(tm; (7a)6i¢(tm.jff) )]

In terms of these matrices, the signal sequence is,

B = E‘I'O ’
P, = ( cos ool sin ¢l ) , @)

x0 = (X )
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B. Model estimation

The signal model in (6) is estimated by minimizing

A@,0,007,\) = R@,0,¢0ly) + aa’ , (9
R(aa g? ¢O|y> = ||y_ 5(57@ ¢0>||2 ) (]0)

with ||Z|| being the Ly norm of T, over @, 0, and ¢, using the
following program of nested minimizations,

min A = min (min (minA)) .
a,0,b0 0 $o a
The innermost minimization corresponds to the penalized
spline method [13]. Henceforth, we drop the explicit listing
of parameters wherever it aids clarity.

The positivity of the amplitude envelope, a(t) > 0, and B-
splines, B; 1.(t;74) > 0, Vt, requires that the innermost min-
imization be performed under a positivity constraint a;; > 0 ,
Vi. For this task, we use the mixed primal-dual bases algorithm
developed by Fraser and Massam [14].

The regulator gain, A, is determined by minimizing the
Generalized Cross-Validation (GCV) function [15]. This is
merged into the minimization program at the second step as
follows.

(1)

Agov = arg min GCV(A;¢o(N)) (12)
A

(b()()‘) = arg minA(a/\,¢07§7 ¢()|?) ) (13)

%o
where Qi) 4, is the innermost minimizer in (11) for a given A
and ¢g. Both of the minimizations above are straightforward
to perform numerically.

Let @ = Qxgovy,p0(Acov) and let the corresponding value of
A be denoted by

Fly) = A@,0,90(Acev)ly)
which we call the fitness function in the following. The next
step in the program given by (11) is the minimization of the
fitness function over the parameters 7, 7,and 7.

We use PSO to tackle this high-dimensional non-convex
global optimization problem after making the following sim-
plifications. (i) The dimensionality of the search space is
lowered by (a) identifying the two end breakpoints in 7,
and Ty, ie., [Tflo = Tao and [T¢]lxk—1 = To,m—1, and (b)
letting the spacing of the breakpoints in 7, be uniform. (ii) A
reparametrization [16] of 7 is made to enforce monotonicity,
thereby mitigating degeneracies in the fitness function.

The final step in SEECR is model selection using the Akaike
Information Criterion (AIC) [17] to pick the best values of the
number of breakpoints M and K in 7, and 7T respectively.
The use of GCV and model selection ensures that, in most
situations, the user needs to explore only a range of values for
M and K in order to tune SEECR.

(14)

III. PERFORMANCE ON TRANSIENT CHIRPS

We examine the detection and estimation performance of
SEECR on a set of three chirps that are widely different in
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Fig. 3. The plot at the top shows the time series of a data realization (in blue)
with an embedded SNR = 10 LC-I signal that is shown by the time series
in red. The remaining plots show the spectrogram of this data realization at
three different time-frequency resolutions (short segment lengths of 64, 256,
and 1024 samples from top to bottom). The sampling frequency of the time
series is 4096 Hz and its duration is 2.0 sec. In all the plots, the horizontal
axis is time (sec). The vertical axis in each spectrogram is frequency (Hz).

B
>
3
2
3
3
=
o
I

@
3
3

0.2 0.4 0.6 0.8 1 12 14 16 18
Time (sar)

Fig. 4. The plot at the top is the spectrogram of the LC-I signal that is
embedded in the data realization shown in Fig. 3. The bottom plot shows the
spectrogram of the signal estimated by SEECR.

morphology: (i) Linear Chirp with increasing frequency (LC-
I), (ii) Linear Chirp with decreasing frequency (LC-D), and
(iii) Quadratic Chirp (QC). In each case the signal is embedded
in a simulated white noise with a matched filtering SNR —
defined as the L, norm of the signal — of 10. The settings
for the SEECR parameters are fixed in all three cases at M &
{5,6,7,9,11} and K € {3,4,5,7} respectively. The settings
for PSO [18] are the same as used in [19], to which we refer
the reader for further details. For the above set of M and K
values, the dimensionality of the search space for PSO ranges
between 6 and 14.

Fig. 3 shows a realization of simulated data along with
its spectrograms at different time-frequency resolutions. The
signal is too weak to show up clearly in any of the spec-
trograms, indicating that time-frequency based burst search
method cannot detect this signal. Fig. 4 shows spectrograms
of the LC-I signals used in Fig. 3 and the signal estimated by
SEECR.

In Fig. 5, we compare the estimated instantaneous frequen-

ISBN 978-90-827970-1-5 © EURASIP 2018

1000

Frequency (Hz)
@ & 9 2 N ® o
g &8 & 8 o & &
s 8 8 83 8 8 &8

I
=1
S}

=}
S)

0.5 1 1.5
Time (sec)

Time (sec)

Fig. 5. Two dimensional histogram of estimated instantaneous frequencies
for (left panel) data realizations containing the LC-I signal with SNR = 10,
and (right panel) noise-only data. Each histogram is constructed by plotting
all the estimated frequencies and counting the number of plotted points in a
regular grid of 2D bins. There are 50 bins along each dimension. The counts
in each panel are normalized by the respective number of trials used.
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Fig. 6. Two dimensional histogram of estimated amplitude envelopes for
(left panel) data realizations containing the LC-I signal with SNR = 10, and
(right panel) noise-only data. Each histogram is constructed by plotting all
the estimated amplitude envelopes and counting the number of plotted points
in a regular grid of 2D bins. There are 50 bins along each dimension. The
counts in each panel are normalized by the respective number of trials used.

cies for data realizations containing the LC-I signal and noise-
only data. A similar plot for the estimated amplitude envelope
of the signal is shown in Fig. 6. It is clear that SEECR
estimates the instantaneous frequency, even at a low SNR,
quite well. As expected from the Cramer-Rao lower bound,
which says that the amplitude of a monochromatic signal
is always estimated with a higher error than its frequency,
the error in the estimation of a(t) is also higher than f(¢).
(The estimation performance of SEECR is analyzed using
quantitative metrics in [5].)

Table I lists the detection probabilities obtained for the three
signals at SNR values of 10 and 12. The performance of
SEECR is seen to improve rapidly with a modest rise in the
SNR of these signals.

IV. MITIGATING LINE NOISE

The line mitigation method currently used in GW burst
searches is the Linear Predictive Filter (LPF) [20]. In the LPF,

2663



2018 26th European Signal Processing Conference (EUSIPCO)

10°®

L i J ‘ e J
i N”\ / w\*‘ﬂww'*\trr‘““w ‘W&WM k\J,ﬁWWWWW‘W*WwwﬂvW l\ f,-”"
| ! Y
|

50 100 150 200 250 300 350
Frequency (Hz)

Fig. 7. PSD (arbitrary units) of the prediction error sequence produced
by LPF acting on LIGO data at a frequency resolution of (top) 2 Hz, and
(bottom) 0.25 Hz. The whitening in the frequency band shown is evident
when compared to the sensitivity curve in Fig. 1. That LPF does notch filtering
is seen clearly from the dips (note the logarithmic scale) at the power line
frequency at 60 Hz (also at 332 Hz) in the finer resolution PSD (bottom).
However, the notching is masked in the PSD at coarser resolution (top). The
data used to produce these plots was obtained from the LIGO Open Science
Center (GW150914; 32 sec of H1 data; downsampled to 1024 Hz and high
pass filtered). LPF is available as the in-built function 1pc in Matlab [22].

a predictor, Z[n], for the n*® sample, z[n], of data is obtained
as a linear combination, Z[n] = Z]Ail cljlz(n — j), of past
samples. The coefficients c[j], j = 1 to M, are trained by
minimizing the variance of the prediction error z[n| — Z[n].

The Power Spectral Density (PSD) of the prediction error
sequence appears white on a frequency scale 2 f,/M [21].
Hence, if a time-frequency transform based burst search
method sets its frequency resolution to be coarser than the LPF
whitening scale, it can analyze the prediction error sequence
as effectively having white noise. However, the LPF is actually
a notch filter, as seen in Fig. 7, and its output is not white for
search methods such as SEECR.

Being a notch filter, the LPF is susceptible to non-
stationarity in lines because it can only mitigate lines at
the frequencies exhibited in the data used for training the
filter coefficients. As noted in [23], imperfectly notched non-
stationary lines lead to spurious transients that can mimic GW
signals.

Exploiting the fact that lines are generally very high power
features, it should be possible to have an alternative approach
that treats lines as simply non-transient unmodeled signals and
estimates them with non-parametric methods [24], [25]. Unlike
the LPF output, data cleaned in this manner can function as
a universal input to all GW search methods. Since SEECR is
designed to estimate unmodeled chirps and operates at much

ESTIMATED DETECTION PROBABILITIES, AND THEIR 10 ERROR
INTERVALS AT A FALSE ALARM RATE OF 10~3 EVENTS/SEC.

Signal Detection Probability
SNR=10 SNR=12
LC-I | 0524 0.07 | 0.90 £ 0.04
LC-D | 048 £0.07 | 0.92 £ 0.04
QC 0.61 £ 0.04 | 0.97+ 0.01
TABLE T
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Fig. 8. Line removal demonstration with the single-detector version of
SEECR. The bottom sub-panel shows the time series of the signal and the top
sub-panel shows the periodogram of the data before and after removing the
SEECR estimate of the signal. (The frequency resolution here is 0.5 Hz.) The
red curve in the bottom sub-panel shows the estimated amplitude envelope of
the signal.

lower signal SNRs than typically presented by the lines in
real data, it offers the potential of substantially improving the
estimate.

A. Single line

Fig. 8 demonstrates SEECR as a line remover. A 1.5 sec
long amplitude modulated sinusoid, with an SNR that is much
weaker than those of typical lines in real data, is estimated
using SEECR. Subtracting this estimate is seen to get rid of the
line almost completely. More importantly, unlike the LPF, the
subtraction does not leave behind a noticeable notch. Note that,
besides the instantaneous frequency, the amplitude envelope of
a line must also be estimated for its subtraction to be effective.

B. Multiple lines

One of the main issues in line removal for a method such
as SEECR, which assumes that there is only a single chirp
in the data, is the presence of multiple lines. The simplest
strategy in this case is to run SEECR with the search range in
instantaneous frequency values (¥ in Sec. 1) restricted to some
band around each line. Thus, if there are lines in the data with
carrier frequencies f;, i = 1,2,..., P in ascending order, we
run SEECR independently P times with search ranges |v, —
fz| S lz S min(fH_l — fzafz — fi—l)? k= 1,2, e ,K. Each
run of SEECR produces an estimate of the respective line that
can then be subtracted from the data.

Fig. 9 shows the effectiveness of this strategy for different
separations between the frequencies of two monochromatic
signals in white noise. The frequency of one line is fixed at
f1 = 250 Hz and that of the other, fs, is varied. Only the
line at f; is estimated and removed. The search range for
instantaneous frequency values in SEECR is kept fixed at [; =
50 Hz.

The simple strategy above is observed to work well when
the two lines have equal SNR: FE, is reduced to 4% of Eqata
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Fig. 9. Removal of a monochromatic line at frequency fi = 250 Hz in the
presence of a second line at frequency fo. The quantity E 4 is the average
periodogram of a sequence A over the range f1 &1 Hz. A = ‘data’ and ‘res’
respectively denote the data and the residual obtained from it after subtracting
out the estimated signal. The two curves correspond to the two lines having
(blue) equal and (orange) unequal amplitudes. In the latter case, the amplitude
of the line at fo is a factor of 100 higher than that of the line at f;.

in the immediate neighborhood of f; even when l; = fo — f7.
Since the assumption of a single chirp becomes progressively
worse with decreasing fo — fi, the effectiveness of the strategy
is reduced when the two lines move closer to each other. In
contrast, the strategy is a total failure if the line that is not
being removed (i.e. f2) is much stronger.

V. CONCLUSIONS

[1]

[2]

[3]
[4]
[5]
[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]
SEECR is found to be an effective method for detecting [14)
and estimating transient chirps. In particular, it improves the
detectability of unmodeled GW chirps at signal strengths [15]
where time-frequency clustering, the basis of the principal GW
burst search methods, is seen to fail.
We presented a first application of SEECR to the case of [16]
non-transient chirp estimation and subtraction, a problem that
is highly relevant to GW data analysis given the presence of [17]
high power line interference. While SEECR performs quite
well when the data has a single line or multiple lines with [18]
comparable strengths, simple strategies to extend its applica-
tion to the case of highly disparate strengths do not suffice. It is (19]
possible that evaluating the fitness function in the frequency
rather than time domain, with a restriction on the range of
frequencies used, can lead to a significant improvement in [20]
performance. This and other ideas will need to be explored in  [21]
future work.
[22]
ACKNOWLEDGMENT 23]
This work was supported by National Science Founda- [24]
tion Grant No. PHY-1505861. We acknowledge the Texas [25]
Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have con-
tributed to the research results reported within this paper. URL:
http://www.tacc.utexas.edu
ISBN 978-90-827970-1-5 © EURASIP 2018 2665

REFERENCES

P. Fritschel, “Second generation instruments for the Laser Interferometer
Gravitational Wave Observatory (LIGO),” in Gravitational-Wave De-
tection, ser. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, M. Cruise and P. Saulson, Eds., vol. 4856, Mar. 2003,
pp. 282-291.

J. Degallaix, T. Accadia, F. Acernese, M. Agathos, A. Allocca et al.,
“Advanced Virgo Status,” in 9th LISA Symposium, ser. Astronomical
Society of the Pacific Conference Series, G. Auger, P. Binétruy, and
E. Plagnol, Eds., vol. 467, Jan. 2013, p. 151.

LIGO Scientific Collaboration. Detection of gravitational waves.
[Online]. Available: https://www.ligo.org/detections.php
C. W. Helstrom, Statistical Theory of Signal Detection.
London, 1968.

S. D. Mohanty, “Spline based search method for unmodeled transient
gravitational wave chirps,” Phys. Rev. D, vol. 96, p. 102008, Nov 2017.
S. Klimenko et al., “Method for detection and reconstruction of gravita-
tional wave transients with networks of advanced detectors,” Phys. Rev.
D, vol. 93, p. 042004, Feb 2016.

N. J. Cornish and T. B. Littenberg, “Bayeswave: Bayesian inference
for gravitational wave bursts and instrument glitches,” Classical and
Quantum Gravity, vol. 32, no. 13, p. 135012, 2015.

R. Lynch, S. Vitale, R. Essick, E. Katsavounidis, and F. Robinet,
“Information-theoretic approach to the gravitational-wave burst detection
problem,” Phys. Rev. D, vol. 95, no. 10, p. 104046, May 2017.

P. J. Sutton, G. Jones, S. Chatterji, P. Kalmus, I. Leonor, S. Poprocki,
J. Rollins, A. Searle, L. Stein, M. Tinto, and M. Was, “X-Pipeline:
an analysis package for autonomous gravitational-wave burst searches,”
New Journal of Physics, vol. 12, p. 053034, 2010.

S. D. Mohanty, “Particle swarm optimization and regression analysis IL,”
Astronomical Review, vol. 7, no. 4, pp. 4-25, 2012.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on. 1EEE, 1995, pp.
39-43.

C. de Boor, A Practical Guide to Splines (Applied Mathematical
Sciences). Springer, 2001.

D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric regression.
Cambridge University Press, 2003.

D. Fraser and H. Massam, “A mixed primal-dual bases algorithm for re-
gression under inequality constraints. application to concave regression,”
Scandinavian Journal of Statistics, vol. 16, pp. 65-74, 1989.

G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing a good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215-223, 1979.

C. Leung, “Estimation of unmodeled gravitational wave transients with
spline regression and particle swarm optimization,” SIAM Undergradu-
ate Research Online (SIURO), vol. 8, 2015.

H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Selected Papers of Hirotugu Akaike. Springer,
1998, pp. 199-213.

D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE.
IEEE, 2007, pp. 120-127.

Y. Wang, S. D. Mohanty, and F. A. Jenet, “Coherent Network Analysis
for Continuous Gravitational Wave Signals in a Pulsar Timing Array:
Pulsar Phases as Extrinsic Parameters,” Astrophy. J., vol. 815, p. 125,
Dec. 2015.

S. S. Haykin, Adaptive filter theory. Pearson Education India, 2008.
S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, “Mul-
tiresolution techniques for the detection of gravitational-wave bursts,”
Classical and Quantum Gravity, vol. 21, no. 20, p. S1809, 2004.
MATLAB, version 9.0 (R2016a). Natick, Massachusetts: The Math-
Works Inc., 2016.

B. P. Abbott et al., “Observation of gravitational waves from a binary
black hole merger,” Phys. Rev. Lett., vol. 116, p. 061102, Feb 2016.
W. Hardle, “Applied nonparametric regression,” Econometric Society
Monographs, vol. 19, 1990, cambridge University Press.

S. D. Mohanty, “Median based line tracker (MBLT): model indepen-
dent and transient preserving line removal from interferometric data,”
Classical and Quantum Gravity, vol. 19, pp. 1513-1519, Apr. 2002.

Pergamon,



