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Abstract—This paper proposes a new method of anomalous
sound event detection for use in public spaces. The proposed
method utilizes WaveNet, a generative model based on a con-
volutional neural network, to model in the time domain the
various acoustic patterns which occur in public spaces. When
the model detects unknown acoustic patterns, they are identified
as anomalous sound events. WaveNet has been used to precisely
model a waveform signal and to directly generate it using random
sampling in generation tasks, such as speech synthesis. On the
other hand, our proposed method uses WaveNet as a predictor
rather than a generator to detect waveform segments causing
large prediction errors as unknown acoustic patterns. Because
WaveNet is capable of modeling detailed temporal structures,
such as phase information, of the waveform signals, the proposed
method is expected to detect anomalous sound events more
accurately than conventional methods based on reconstruction
errors of acoustic features. To evaluate the performance of the
proposed method, we conduct an experimental evaluation using a
real-world dataset recorded in a subway station. We compare the
proposed method with the conventional feature-based methods
such as an auto-encoder and a long short-term memory network.
Experimental results demonstrate that the proposed method
outperforms the conventional methods and that the prediction
errors of WaveNet can be effectively used as a good metric for
unsupervised anomalous detection.

Index Terms—anomaly detection, anomalous sound event de-
tection, WaveNet, neural network

I. INTRODUCTION

In response to the rising number of terrorism incidents,
demands for better public safety have been increasing all over
the world. To meet these demands, video-based monitoring
systems have been developed which make it possible to
automatically detect suspicious people or objects [1], [2], as
well as sound-based security systems which can automatically
detect anomalous sound events such as glass breaking [3]–[5].
Video-based systems have proven to be effective, however due
to blind spots and limited installation of cameras it is difficult
for these systems to monitor an entire area. On the other hand,
sound-based systems have been attracting increased attention
because they have no blind spots, and microphones cheaper
are easier to install than cameras. Therefore, sound-based

systems can complement video-based systems by covering
camera blind spots. Furthermore, a combination of sound-
based and video-based systems is likely to result in more
intelligent monitoring systems.

The key technology of sound-based monitoring system
can be divided into two types; supervised and unsupervised
approaches. Supervised approaches use manually labeled data,
and include acoustic scene classification (ASC) [6], [7] and
acoustic event detection (AED) [8]–[10] methods. Here, scenes
represent the environment which the audio segments are
recorded, and sound events represent sounds related to human
behaviors or moving of objects. The task of ASC is to classify
long-term audio segments into pre-defined scenes, while the
task of AED is to identify the start and end times of pre-
defined sound events to label them. These technologies make
it possible to understand an environment and detect various
types of sounds, but they require the pre-definition of all of
the possible scenes and sound events, and it is difficult to
collect and label so much of this type sound data.

Unsupervised approaches, on the other hand, do not require
manually labeled data, so they are less costly. One unsuper-
vised approach is change point detection [11]–[13], which
compares a model of the current time with that of a previous
time to calculate a dissimilarity score, and then identifies
highly dissimilar comparison results as anomalies. However,
in the case of public spaces, the sounds which can occur are
highly variable and non-stationary, and therefore, the detected
change points are not always related to anomalies that are of
concern (e.g., the sound of the departure of the train). Another
unsupervised approach is outlier detection [14]–[16], which
models an environment’s “normal” sound patterns, and then
detects patterns which do not correspond to the normal model
and identifies them as anomalies. Note that the “normal”
patterns are patterns which appeared in the training data.
Typically, a Gaussian mixture model (GMM) or one-class
support vector machine (SVM) with acoustic features such
as mel-frequency cepstrum coefficients (MFCCs) is used [17],
[18]. With the recent advances in deep learning, neural net-
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work based methods have been attracting attention [19]–[21].
These methods train an auto-encoder (AE) or a long short-
term memory recurrent neural network (LSTM-RNN) with
only normal scene data. While the AE encodes the inputs
as latent features and then decodes them as the original
inputs, LSTM-RNN predicts the next input from the previous
input sequence. Using a trained model, reconstruction errors
between observations and the predictions are calculated and
the high error patterns are identified as anomalies. Although
these methods have achieved high performance, it is difficult
to directly model the acoustic patterns in the time domain due
to their highly non-stationary nature and their high sampling
rate so they typically use feature vectors extracted from audio
signals.

In this study, we propose a new method of anomalous
sound event detection method in public spaces which utilize
WaveNet [22]–[24], a generative model based on a convolu-
tional neural network, to directly model the various acoustic
patterns occurring in public spaces in the time domain. Based
on this model, unknown acoustic patterns are identified as
anomalous sound events. WaveNet has been used to precisely
model a waveform signal and to directly generate it using
random sampling in generation tasks, such as speech synthesis.
On the other hand, our proposed method uses WaveNet as a
predictor rather than a generator to detect waveform segments
causing large prediction errors as unknown acoustic patterns.
Because WaveNet is capable of modeling detailed temporal
structures, such as phase information, of the waveform signals,
the proposed method is expected to detect anomalous sound
events more accurately than conventional methods based on
reconstruction errors of acoustic features. To evaluate the
performance of the proposed method, we conduct an exper-
imental evaluation using a real-world dataset recorded in a
subway station. We compare the proposed method with the
conventional feature-based methods such as an auto-encoder
and a long short-term memory network. Experimental results
demonstrate that the proposed method outperforms the con-
ventional methods and that the prediction errors of WaveNet
can be effectively utilized as a good metric for unsupervised
anomalous detection.

II. ANOMALOUS SOUND EVENT DETECTION SYSTEM
BASED ON WAVENET

A. System overview

An overview of our proposed system, separated into training
and test phases, is shown in Fig. 1. In the training phase,
the waveform signal is divided into 25 ms windows with
4 % overlap to calculate a 40 dimensional log mel filter
bank. Note that we use a large amount of overlap in order
to directly model the waveform signal in the time domain.
The statistics of the extracted features are calculated over
training data to perform global normalization, making the
mean and variance of each dimension of the features 0 and 1,
respectively. The time resolution adjustment procedure shown
in Fig. 2 is performed to make the time resolution of the
features the same as the waveform signal. The waveform signal

Fig. 1: System overview.

is quantized and then converted into a sequence of one-hot
vectors. Finally, WaveNet is trained with the sequence and the
features, as described in Section II-B.

In the test phase, as in the training phase, features are cal-
culated from the input waveform signal and normalized using
the statistics of the training data. The input waveform signal is
also quantized and then converted into a sequence of one-hot
vectors. WaveNet then calculates a posterigram (a sequence
of posteriors) with the sequence and the features. Note that
since WaveNet is used as a finite impulse response (FIR) filter,
as explained in Section II-B, decoding is much faster than
when using the original WaveNet decoding process. Next, the
entropy of each posterior is calculated over the posteriogram.
We then perform thresholding for the sequence of entropies to
detect anomalies, as described in Section II-C. Finally, three
kinds of post-processing are performed to smooth the detection
result, as described in Section II-D.

B. WaveNet

To directly model acoustic patterns in the time domain, we
use WaveNet [22], which is a generative model based on a
convolutional neural network. The conditional probability of a
waveform x = {x1, x2, . . . , xN} given the auxiliary features

Fig. 2: The procedure of time resolution adjustment.
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Fig. 3: Overview of WaveNet’s structure.

h is factorized as a product of conditional probabilities as
follows:

p(x|h) =
N∏

n=1

p(xn|x1, x2, . . . , xn−1,h). (1)

WaveNet approximates the conditional probability above by
canceling the effect of past samples of a finite length as
follows:

WaveNet(x,h) ' p(xn|xn−R−1, xn−R, . . . , xn−1,h), (2)

where R is the number of past samples to take into account,
which is known as the “receptive field”. In order to generate
a waveform directly, it is necessary to secure a very large
receptive field, which requires huge computational resources.
WaveNet can achieve this task more efficiently through the use
of “dilated causal convolutions”, which are convolutions with
holes, so that the output does not depend on future samples.
This architecture can not only secure very large receptive
fields, but also significantly reduces computational cost and
the number of model parameters.

The overall structure of WaveNet is shown in Fig. 3.
WaveNet consists of many residual blocks, each of which
consists of 2×1 dilated causal convolutions, a gated activation
function and 1×1 convolutions. The gated activation function
is formulated as follows:

z = tanh(Wf,k ∗ x + Vf,k ∗ f(h))�
σ(Wg,k ∗ x + Vg,k ∗ f(h)),

(3)

where W and V are trainable convolution filters, W ∗ x
represents a dilated causal convolution, V ∗ f(h) represents
a 1×1 convolution, � represents element-wise multiplication,
σ represents a sigmoid activation function, subscript k is the
layer index, subscripts f and g represent the “filter” and
“gate”, respectively, and f(·) represents the function which
transforms features h to have the same time resolution as the
input waveform. The waveform signal is quantized into 8 bits
by µ-law algorithm [25] and converted into a sequence of 256
dimensional (= 8 bits) one-hot vectors.

During training, WaveNet is used as an FIR filter, i.e., it pre-
dicts a future sample xt from observed samples xt−R−1:t−1.

WaveNet is optimized through back-propagation using the
following cross-entropy objective function:

E(Θ) = −
T∑

t=1

C∑
c=1

yt,c log ŷt,c (4)

where yt = {yt,1, yt,2, . . . , yt,C} represents the one-hot
vector of the target quantized waveform signal, ŷt =
{ŷt,1, ŷt,2, . . . , ŷt,C} represents the posterior of the amplitude
class, t and i represent the index of the waveform samples
and their amplitude class, respectively, T and C represent
the number of waveform samples and number of amplitude
classes, respectively.

When decoding, WaveNet is usually used as an autoregres-
sive filter, i.e., it predicts the future sample x̂t from predicted
samples x̂t−R−1:t−1 and repeats the procedure to randomly
generate a waveform signal [22]. However, in the case of
anomaly detection, we can use all of the observed waveform
signals for decoding. Therefore, WaveNet is used here as an
FIR filter in the same manner as during training.

C. Scoring

To detect anomalous sound events, we focus on an un-
certainty of the prediction. Examples of the posteriors of
known and unknown sounds are shown in Fig. 4. These figures
indicate that the shape of posterior of a known sound is sharp
while that of an unknown sound is flat. Hence, it is expected
that we can identify unknown sounds as anomalous sound
events based on an uncertainty of the prediction.

To quantify the uncertainty of the prediction, an entropy e
of the posterior is calculated as follows:

et = −
C∑

c=1

ŷt,c log2 ŷt,c. (5)

The entropy is calculated over the posteriogram, resulting in
the entropy sequence e = {e1, e2, . . . , eT }. Finally, thresh-
olding for the sequence of entropies is performed using the
following threshold value:

θ = µ+ βσ, (6)

where θ represents the threshold value, µ and σ represent the
mean and the standard deviation of the entropy sequence, re-
spectively, and β is a hyperparameter. The value of parameter
β is decided through preliminary experiments.

An example of a sequence of entropies is shown in Fig. 5.
We can see that entropy increases in the parts of the sequence
corresponding to the unknown sound.

D. Post-processing

To smooth the detection results, three kinds of post-
processing are applied.

1) Apply a median filter with a predetermined filter span;
2) Fill gaps which are shorter than a predetermined length;
3) Remove events whose duration is shorter than a prede-

termined length.
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(a) Posterior of a known sound (b) Posterior of a unknown sound

Fig. 4: Examples of the WaveNet posterior for known and unknown sounds.

Fig. 5: Example of a sequence of entropies. The top figure
represents a sequence of entropies and their threshold values,
and bottom figure represents the binarized detection results.

An outline of each post-processing step is illustrated in Fig. 6.
The parameters for post-processing are decided through pre-
liminary experiments.

III. EXPERIMENTAL EVALUATION

We evaluated our proposed methods using two-weeks of
audio data recoded at a subway station. Data from the first
week was used as training data, and the rest of the data
are used as evaluation data. We divided the continuous audio
data into 30 seconds pieces and added anomalous sounds to
each piece of evaluation data. The added anomalous sounds
included the sound of glass breaking, screaming, and growling,
and are selected from the Sound Ideas Series 6000 General
Sound Effects Library [26]. Each sound was added at random
temporal positions with three signal-to-noise ratios (SNRs):
0 dB, 10 dB, and 20 dB. Evaluation was conducted in
two regimes, event-based metric (onset only) and segment-
based evaluation metric, where the F1-score is utilized as the
evaluation criteria (see [27] for more details).

To compare the performance of our proposed method, we
used the following methods:

• Auto-encoder (AE),
• Auto-regressive LSTM (AR-LSTM),
• Bidirectional LSTM auto-encoder (BLSTM-AE).

These networks consisted of 3 hidden layers with 256 hidden
units, and the inputs were 40 dimensional log mel filter bank

(a) Application of median filter

(b) Filling gaps

(c) Removal of short duration events

Fig. 6: Outline of each post-processing step.

features, which were extracted with 25 ms window and a 10 ms
shift. All of these networks were optimized using Adam [28]
under the objective function based on the root mean squared
error. Thresholding and post-processing were the same as our
proposed method. All networks were trained using the open
source toolkit Keras [29] and TensorFlow [30] with a single
GPU (Nvidia GTX 1080Ti).

Our experimental results are shown in Table I, where
EB and SB represent event-based metric and segment-based
metric, respectively. The result shows our proposed method
outperforms the conventional methods for both event-based
and segment-based metrics, thus we can confirm the effec-
tiveness of our proposed method. An example of the detection
results are shown in Fig. 7. We can see that our proposed
method can detect anomalous sound events even if they are
difficult to distinguish through the spectrogram.

TABLE I: Experimental results.
Method EB F1-score [%] SB F1-score [%]
AE 65.8 68.2
AR-LSTM 61.5 64.3
BLSTM-AE 69.2 67.7
WaveNet 75.0 77.8
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Fig. 7: Example of detection results. In the spectrogram, first
pulse represents a glass breaking sound, while the others
represent footsteps of a woman wearing high heels.

IV. CONCLUSION

In this paper, we proposed a new method of anomalous
sound event detection in public spaces which utilized WaveNet
to model in the time domain the various acoustic patterns
which occur in public spaces. Based on our model, unknown
acoustic patterns are identified as anomaly sounds. The use of
WaveNet allows the modeling of detailed temporal structures
of acoustic patterns, such as phase information, that occur in
public spaces. Our experimental results, when using a real-
world dataset in a public space, demonstrated that the proposed
method outperformed the conventional methods and that the
prediction errors of WaveNet can be effectively used as a good
metric for unsupervised anomalous detection.

In future works, we will investigate the effect of auxiliary
features, improve the thresholding process and apply our
method to another dataset.
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