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Abstract—In designing a particle filter, the most important
task is choosing the importance function that can generate
good particles. If the importance function, also called proposal,
does a satisfactory job, the particles of the filter are placed in
parts where the explored state space has high probability mass.
Further, the weights of these particles are not too disparate
in values. An important class of particle filtering that uses a
clever approach to create good importance functions is known
as auxiliary particle filtering. In this paper, we first analyze
the approximations used for computing the particle weights
of the standard auxiliary particle filter. We show that these
approximations can be detrimental to the performance of the
auxiliary particle filter. Further, we propose a more comprehen-
sive evaluation of the weights, which leads to a much enhanced
performance of the auxiliary particle filter. We also demonstrate
the improvements with computer simulations.

I. INTRODUCTION

Particle filters are a well-known Monte Carlo methodology
for sequential estimation of hidden processes (states) based
on state-space models. Particle filters provide approximations
of filtering and predictive probability density functions (pdfs)
recursively [1], [2], [3]. The approximations are based on
samples (particles) of the states and weights associated to
them. Particle filters are based on a clever combination of
the sequential importance sampling (SIS) technique and re-
sampling [4], [5], [6], [7].

Since the publication of [8], the number of works on particle
filtering has been continuously increasing and the number of
areas where they have been applied has not stopped growing.
The reason behind this popularity is their ability to work in
highly nonlinear and non-Gaussian settings and their relative
simplicity of implementation. By now, however, it has also
been established that they suffer from two notorious problems:
sample degeneracy and impoverishment [6], [7], [9].

Sample degeneracy is an inherent drawback of the SIS pro-
cess. Indeed, after a few recursions of the sequential procedure,
only a very small number of particles have non-negligible
weights, which means that they are the only particles that
approximate the desired pdf. This often results in a rather
poor approximation of all the ensuing estimates. A standard
recipe for preventing sample degeneracy is implementing a
step known as resampling. With resampling, copies of particles
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with large weights are kept and those with low weights are
discarded [10], [11].

The use of resampling, however, introduces another prob-
lem, often referred to as sample impoverishment, path de-
generacy, or loss of diversity in the population of particles.
When the degeneracy problem is more serious, then the
impoverishment after resampling will be more serious as well.
The loss of diversity is due to the distribution of the resampled
particles, which can differ substantially from the target [12],
[13, Appendix 3]. The loss of diversity, if significant, may lead
to loss of the tracked state.

The problem of degeneracy is often overcome by applying
the resampling only intermittently. In other words, one imple-
ments resampling when some conditions are met. One such
condition is based on the concept of effective sample size
(ESS), which is a measure of the “quality” of the samples
and obtained from their weights. If the ESS is smaller than
a pre-specified threshold, resampling is applied [14], [15].
Another simple strategy consists in applying a regularization
in the resampling procedure, i.e., in applying an additional
perturbation to the resampled particles (it is based on the
kernel density estimation idea) [4], [7], [16]. Another approach
is based on the use of a nonlinear transformation of the
weights in order to force flatness in the discrete probability
mass defined by the weights, before applying the resampling
step [2], [17]. In adaptive importance sampling (AIS) schemes
[18], also involving resampling steps, the same effect can be
obtained by a more sophisticated definition of the importance
weights [19], [20].

One can easily argue that the best way to mitigate sample
impoverishment is by generating good particles. The optimal
theoretical solution consists in using the optimal proposal
density, which provides the smallest variance of the impor-
tance weights [4], [6], [7]. Unfortunately, the use of the
optimal proposal density is impossible in most practical cases.
Thus, one resorts to approximations of the optimal proposal
density [6], [7], [16]. Another possibility is to apply Markov
Chain Monte Carlo (MCMC) sampling within the particle
filtering (e.g, as in the resample-move algorithm [21]). Other
techniques suggest the application of optimization procedures
for modifying the positions of the particles (see for instance
[22]). In the same fashion, there are methods that push the
particles to be in high-likelihood regions by using bridging
densities and tempering strategies, in essence, introducing
intermediate distributions between the prior and the likelihood
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[9], [23].
A method that has the same aim and that is of interest in this

paper is the auxiliary particle filtering method [24]. The auxil-
iary particle filter (APF) tries to mimic the particle propagation
obtained by drawing from the optimal proposal pdf, at the
expense of an additional computational cost. Namely, it places
first new particles deterministically at locations with high
probabilities, and computes their weights by using the new
observations. These weights are then exploited for deciding
which particles from the previous time step to propagate. The
APF has also attracted high interest, which is attested by a
continuous stream of papers where the main idea behind them
is exploited in creative ways. Some very recent contributions
include [25], [26], [27].

In this paper, we return to the classical APF and investi-
gate the approximations used to compute the weights of its
intermediate samples and particles. We show that when these
approximations are too harsh, the filter cannot perform well. If
by contrast, these weights are computed more accurately, with
the APF we can achieve very much improved performance
over the standard particle filter.

The paper is organized as follows. In the next section, we
review the standard auxiliary particle filter. In the following
section, we present the derivation of an improved auxiliary
particle filter. In Section IV, we compare the performance
of the proposed filter with that of the standard APF and the
bootstrap particle filter (BPF). In Section V, we make some
final comments.

II. BACKGROUND

A. Bayesian filtering in dynamical models

We consider the following state-space model (SSM) in
discrete time (t ∈ N+):

x0 ∼ p(x0), (1)
xt ∼ p(xt|xt−1), (2)
yt ∼ p(yt|xt), (3)

where xt ∈ Rdx is a hidden (random) system state at time
t; p(x0) is the a priori pdf of the state; p(xt|xt−1) denotes
the conditional density of the state xt given xt−1; yt ∈ Rdy

is an observation vector and is assumed to be conditionally
independent of all other observations given the state xt; and
p(yt|xt) is the conditional pdf of yt given xt (also referred as
the likelihood of xt, when it is viewed as a function of xt given
yt). The model described by Eqs. (1)–(3) includes a broad
class of systems, both linear and nonlinear, with Gaussian or
non-Gaussian perturbations.

The stochastic filtering problem consists of the probabilistic
estimation of the hidden state xt conditioned on all the
observations available up to time t denoted by y1:t, i.e., the
computation of the filtering pdf p(xt|y1:t). At each time t, the
filtering task requires two steps. First, the propagation step
computes the predictive pdf of the state, p(xt|y1:t−1),

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (4)

Algorithm 1: Auxiliary Particle Filter

1) Initialization. At time t = 0, draw M i.i.d. samples, x(m)
0 , from

the distribution p(x0), and set w(m)
0 = 1

M
, m = 1, ...,M.

2) Recursive step. Let {x(m)
t−1}Mm=1 be the particles (samples) gen-

erated at time t− 1. At time t, proceed with the steps below.

a) Compute the mean of the pdf p(xt|x(m)
t−1) as

x̄
(m)
t = E

p(xt|x
(m)
t−1)

[xt], m = 1, ...,M. (6)

b) Compute the normalized weights of each kernel in the mixture
as

λ
(m)
t ∝ p(yt|x̄

(m)
t )w

(m)
t−1 , m = 1, ...,M, (7)

and build the importance sampling (IS) proposal as

qAPF(xt) =

M∑
m=1

λ
(m)
t p(xt|x(m)

t−1). (8)

c) Draw M i.i.d. samples from qAPF(xt) in two steps:
i) select the indexes i(m), m = 1, ...M , with pmf given by

P(i(m) = j) = λ
(j)
t , j ∈ {1, ...,M}.

ii) simulate x
(m)
t ∼ p(xt|x(im)

t−1 ), m = 1, ...M .
d) Compute the weights as

w
(m)
t =

p(yt|x
(m)
t )

p(yt|x̄
(im)
t )

, m = 1, ...,M. (9)

e) Normalize the weights

w̄
(m)
t =

w
(m)
t∑M

k=1 w
(k)
t

, m = 1, ...,M. (10)

Second, using Bayes’ theorem together with Eq. (4), the
filtering distribution is obtained at the update state as

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

(5)
Unfortunately the two previous steps require intractable

integrals for most models. Hence, the filtering distribution
cannot be exactly obtained, and Monte Carlo approximations
are required.

B. The auxiliary particle filter

Particle filters are Monte Carlo algorithms for approxi-
mating the sequence of filtering distributions p(xt|y1:t) in
a sequential manner. At each time step, the distribution is
approximated with a random set of weighted particles. The
BPF is arguably the simplest version of the algorithm [28]. The
APF aims at improving the way that the samples are simulated
at each time step. To that end, unlike the BPF, the APF uses
the new observation yt in the prediction step. The outline
of the APF is described in Algorithm 1. Eq. (7) computes
what in the literature is usually called pre-weights. Here, we
prefer to call them mixture weights, since they are useful to
define the importance function (or proposal) qAPF(xt) in Eq.
(8). Note that as a result, the APF approximates the filtered
distribution p(xt|y1:t) at time t with the random measure
pM (xt) :=

∑M
m=1 w̄

(m)
t δ(xt − x̄

(m)
t ).
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III. IMPROVED AUXILIARY PARTICLE FILTER

In this section, we propose a novel improved APF (IAPF)
based on a different importance function. We justify the choice
of this function theoretically and derive the APF as a particular
case of the IAPF, stating the implicit approximations in
this derivation. Moreover, we discuss the mixture importance
function used in the BPS, APS, and IAPF. The IAPF is
displayed in Algorithm 2. In step 2(a), the means of the M
kernels p(xt|x(m)

t−1) are computed. This set of kernels builds
the mixture proposal

qIAPF(xt) =
M∑

m=1

λ
′(m)
t p(xt|x(m)

t−1). (11)

The set of weights in the mixture, {λ′(m)
t }Mm=1, in Eq. (16) is

justified as follows. The targeted distribution at time t is

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (12)

≈ p(yt|xt)

M∑
m=1

w̄
(m)
t−1p(xt|x(m)

t−1), (13)

where the state predictive pdf is approximated from
the previous filtering distribution pM (xt|y1:t−1) =∑M

m=1 w̄
(m)
t−1p(xt|x(m)

t−1). The one-step optimal importance
sampling (IS) proposal is proportional to the targeted
distribution, i.e., qopt(xt) ∝ p(yt|xt)

∑M
m=1 w̄

(m)
t−1p(xt|x(m)

t−1).
Since the APF proposal of Eq. (11) is a mixture of M

kernels, p(xt|x(m)
t−1), of identical bandwidths, using kernel

density estimation (KDE) arguments, the weight λ′(m) of
each kernel is computed as the ratio between the filtering
distribution and the equal-weighted mixture of kernels as

λ
′(m)
t ∝ p(x̄

(m)
t |y1:t)

1
M

∑M
j=1 p(x̄

(m)
t |x(j)

t−1)
, (14)

where substituting Eq. (13) in the numerator and evaluating
at x̄

(m)
t yields Eq. (16). In other words, the mixture weights

{λ′(m)
t }Mm=1 are chosen so qIAPF(xt) reconstructs the target

with the set of kernels. In step 2(c), the new particles are
independently drawn from the proposal qIAPF(xt). The IS
weight of Eq. (18) is obtained by simple IS arguments, i.e.,
with the targeted distribution in the numerator given by Eq.
(13) and the proposal in the denominator given by Eq. (11),
both evaluated at each particle x

(m)
t .

A. Novel derivation of the APF from the IAPF

There are two differences between the APF and the novel
IAPF. First, note that both proposals qAPF(xt) and qIAPF(xt)
are mixtures of the same kernels, but with different weights
of the mixands (see Eqs. (7) and (16)). We now explore the
connection between the mixture weights of both algorithms.
Let us suppose that the kernels {p(xt|x(m)

t−1)}Mm=1 do not have

Algorithm 2: Improved Auxiliary Particle Filter

1) Initialization. At time t = 0, draw M i.i.d. samples, x(m)
0 , from the

distribution p(x0), and set w(m)
0 = 1

M
, m = 1, ...,M.

2) Recursive step. Let {x(m)
t−1}Mm=1 be the particles (samples) gener-

ated at time t− 1. At time t, proceed with the steps below.

a) Compute the mean of the pdf p(xt|x(m)
t−1) as

x̄
(m)
t = E

p(xt|x
(m)
t−1)

[xt], m = 1, ...,M. (15)

b) Compute the normalized weights of each kernel in the mixture as

λ
′(m)
t ∝

p(yt|x̄
(m)
t )

∑M
j=1 w

′(j)
t−1p(x̄

(m)
t |x(j)

t−1)∑M
j=1 p(x̄

(m)
t |x(j)

t−1)
(16)

and build the IS proposal as

qIAPF(xt) =

M∑
m=1

λ
′(m)
t p(xt|x(m)

t−1). (17)

c) Draw M i.i.d. samples from qIAPF(xt) in two steps:
i) select the indexes i(m), m = 1, ...M , with pmf given by

P(i(m) = j) = λ
′(j)
t , j ∈ {1, ...,M}.

ii) simulate x
(m)
t ∼ p(xt|x(im)

t−1 ), m = 1, ...M .
d) Compute the weights as

w
′(m)
t =

p(yt|x
(m)
t )

∑M
j=1 w

′(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

′(j)
t p(x

(m)
t |x(j)

t−1)
. (18)

e) Normalize the weights

w̄
′(m)
t =

w
′(m)
t∑M

k=1 w
′(k)
t

, m = 1, ...,M. (19)

significant overlap among them. Then, the mixture weights of
the IAPF can be approximated as

λ
′(m)
t ∝

p(yt|x̄
(m)
t )

∑M
j=1 w

(j)
t−1p(x̄

(m)
t |x(j)

t−1)∑M
j=1 p(x̄

(m)
t |x(j)

t−1)
(20)

≈
p(yt|x̄

(m)
t )w

′(m)
t−1 p(x̄

(m)
t |x(m)

t−1)

p(x̄
(m)
t |x(m)

t−1)
(21)

= p(yt|x̄
(m)
t )w

′(m)
t−1 = λ

(m)
t , (22)

where the approximation comes from the assumption that
p(x̄

(m)
t |x(j)

t−1) ≈ 0, for j 6= m. In other words, each value
x̄
(m)
t is evaluated in all M kernels, but all the evaluations are

considered as zero except the evaluation in its own kernel.
The second difference is in the IS weights. Due to similar
arguments, and still assuming no significant overlap between
kernels, the IS weights in Eq. (18) are approximated as

w
′(m)
t =

p(yt|x
(m)
t )

∑M
j=1 w

′(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

′(j)
t p(x

(m)
t |x(j)

t−1)
(23)

≈
p(yt|x

(m)
t )w

′(im)
t−1 p(x

(m)
t |x(im)

t−1 )

p(yt|x̄
(im)
t )w

′(im)
t−1 p(x

(m)
t |x(im)

t−1 )
(24)

=
p(yt|x

(m)
t )

p(yt|x̄
(im)
t )

= w
(m)
t , (25)
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where the approximation of Eq. (24) assumes that
p(x

(m)
t |x(j)

t−1) ≈ 0, for j 6= i(m), i.e., each particle x(m)
t only

takes relevant value when it is evaluated at the kernel where
it was drawn from.

B. Discussion

The APF can be seen as a particular case of the IAPF
when the kernels {p(xt|x(m)

t−1)}Mm=1 do not have significant
overlap among them. Note that it requires less computations
than the IAPF due to the adopted assumption. However,
when this assumption is violated, i.e., if the overlap of the
kernels is significant, the APF implicitly uses a proposal
distribution potentially very different from the target. This can
happen when the number of particles is large and when the
transition kernel is broad, i.e., when there is a moderate to big
uncertainty in the transition model. Due to IS arguments, this
mismatch between the target and the proposal can dramatically
increase the errors of the filter.

IV. NUMERICAL RESULTS

A. Example 1: Channel estimation in a communication system

We consider a wireless communication system in which the
unknown dynamic channel has a memory of a length dx − 1.
The goal consists in tracking the channel vector xt ∈ Rdx ,
where dx is the number of dynamic coefficients to be esti-
mated. The channel is estimated by sequentially transmitting
symbols (pilots) that are also known to the receiver. We
suppose a linear-Gaussian system described by

xt = Fxt−1 + vt, (26)

yt = g>t xt + nt, (27)

where gt = [dt, dt−1, ..., dt−dx+1]>, is the column vector
that contains the last dx transmitted pilots. The symbols are
independent and dt ∈ {−1,+1} with equal probability. We
simulate the system with F = 0.7I, Σv = 5I, Σn = σ2

n = 0.5,
and p(x0) = I. We set T = 200 time steps. The choice of
this model allows us to compute the ground truth with the
Kalman filter. Table I shows the mean square error (MSE)
in the approximation of the mean of the filtering distribution
w.r.t. the mean provided by the Kalman filter. All filters are
implemented with M = 100 particles. In Table II, the filters
are run with M = 1000 particles for different state values of
state dimension dx ∈ {1, 2, 3, 5, 10}. The results are averaged
over 50 runs. Note that the novel IAPF outperforms the other
filters in all scenarios except in dx = 10 with M = 1000. In all
cases, the performance of the IAPF is significantly better than
the APF, which is consistent with the theoretical justification
in previous section.

B. Example 2: Stochastic growth model

Let us consider the non-linear growth model (see for in-
stance [29], [30]) described by

xt =
xt−1

2
+

25xt−1
1 + x2t−1

+ 8 cos(φt) + ut, (28)

yt =
x2t
20

+ vt, (29)

dx (dimension) 1 2 3 5 10
MSE (BPF) 0.0272 0.3762 0.9657 1.4705 2.9592
MSE (APF) 0.0709 0.8041 1.6041 2.2132 3.7187
MSE (IAPF) 0.0062 0.1764 0.5176 0.8041 2.6931

TABLE I
MSE IN THE APPROXIMATION OF THE POSTERIOR MEAN. M = 100

PARTICLES WERE USED IN ALL FILTERS.

dx (dimension) 1 2 3 5 10
MSE (BPF) 0.0012 0.0318 0.0996 0.2159 0.3280
MSE (APF) 0.0189 0.3893 0.8854 1.3307 1.8961
MSE (IAPF) 0.0006 0.0150 0.0389 0.1204 0.4742

TABLE II
MSE IN THE APPROXIMATION OF THE POSTERIOR MEAN. M = 1000

PARTICLES WERE USED IN ALL FILTERS.

where φ = 0.4 is a frequency parameter (in rad/s), and ut
and vt denote independent zero-mean univariate Gaussian r.v.’s
with variance σ2

u = 1 and σ2
v = 0.1, respectively. The model

was run from t = 1, 2, ..., T , with T = 100. We run all filters
with M = 100 particles. Figure 1 shows the evolution of the
true underlying state xt, and the approximations of the mean
posterior given by BPF, APF, and IAPF. In this specific run,
both BPF and IAPF are able to track the state, while APF
provides significant errors.

V. CONCLUSIONS

The APF is an important type of filter in the class of particle
filters. In theory, it should perform better than the BPF because
it uses a better importance function than the BPF. A standard
implementation of the APF involves a computation of the par-
ticle weights that is based on a series of approximations. These
approximations can result in a much deteriorated performance
of the APF. In this paper, we presented an alternative and
more accurate way of (a) building the importance function
and (b) computing the particle weights, which in turn, leads
to improved performance of the filter. The simulation results
demonstrated that the proposed filter outperforms both the BPF
and the standard APF.
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Fig. 1. Evolution of the hidden state in the stochastic growth model, and the
mean approximations given by BPF, APF, and IAPF.
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filtering,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70–86,
May 2015.

[12] L. Martino, V. Elvira, and F. Louzada, “Weighting a resampled particle in
Sequential Monte Carlo,” IEEE Statistical Signal Processing Workshop,
(SSP), vol. 122, pp. 1–5, 2016.

[13] L. Martino, V. Elvira, D. Luengo, and J. Corander, “Layered adaptive
importance sampling,” Statistics and Computing, vol. 27, no. 3, pp. 599–
623, 2017.

[14] A. Kong, “A note on importance sampling using standardized weights,”
Technical Report 348, Department of Statistics, University of Chicago,
1992.

[15] L. Martino, V. Elvira, and M. F. Louzada, “Effective Sample Size
for importance sampling based on the discrepancy measures,” Signal
Processing, vol. 131, pp. 386–401, 2017.

[16] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, nav-
igation and tracking,” IEEE Transactions Signal Processing, vol. 50,
no. 2, pp. 425–437, February 2002.

[17] E. Koblents and J. Mı́guez, “A population Monte Carlo scheme with
transformed weights and its application to stochastic kinetic models,”
Statistics and Computing, vol. 25, no. 2, pp. 407–425, 2015.

[18] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Mı́guez, and P. M.
Djuric, “Adaptive importance sampling: The past, the present, and the
future,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 60–79,
2017.

[19] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo”, “Generalized
multiple importance sampling,” arXiv:1511.03095, 2015.

[20] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo, “Improving Pop-
ulation Monte Carlo: Alternative weighting and resampling schemes,”
Signal Processing, vol. 131, no. 12, pp. 77–91, 2017.

[21] C. Berzuini and W. Gilks, “Resample-move filtering with cross-model
jumps,” in Sequential Monte Carlo Methods in Practice, A. Doucet,
N. de Freitas, and N. Gordon, Eds. Springer, 2001, ch. 6.

[22] A. O. D and J. Mı́guez, “Nudging the Particle Filter,” IEEE Transactions
Signal Processing, arXiv:1708.07801 2017.

[23] A. Gelman and X. Meng, “Simulating normalizing constants: From
importance sampling to bridge sampling to path sampling,” Statistical
Science, vol. 13, no. 2, pp. 163–185, 1998.

[24] M. K. Pitt and N. Shephard, “Auxiliary variable based particle filters,” in
Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas,
and N. Gordon, Eds. Springer, 2001, ch. 13, pp. 273–293.

[25] P. Guarniero, A. M. Johansen, and A. Lee, “The iterated auxiliary
particle filter,” Journal of the American Statistical Association, pp. 1–12,
2017.

[26] B. Li, C. Liu, and W.-H. Chen, “An auxiliary particle filtering algorithm
with inequality constraints,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4639–4646, 2017.
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